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f(E)
F(E)

<E>

Onfa

NOMENCLATURE

Description
Criticality factor
Generation time
Time, sec
Average neutron production per fission
Prompt neutron energy distribution
Integral of f(E)
Average energy
Atomic weight
Atoms (nuclei) per cm3
Mass density (pure material)
Microscopic cross section
Microscopic scattering cross section
Microscopic absorption cross section
Macroscopic cross section
Neutron mean free path
Free path distribution
Average free path
Macroscopic scattering cross section
Macroscopic absorption cross section
Neutron flux, cm/cm3-sec
Macroscopic fission cross section

Microscopic fission cross section

Macroscopic non-fission absorption cross
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Microscopic non-fission absorption cross
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NOMENCLATURE (Cont.)

Symbol Description Introduced*®
ev Electron volt 7.0
v Velocity, cm/sec 7.0
myp Neutron mass 7.0
T Temperature, OK 7.0
J Neutron current vector, neutrons/ cm2-sec 7.1
D Neutron diffusion coefficient, cm 7.1
grad,v Gradient operator 7.1
grad,2 v2 Laplacian operator 7.1
n Neutirons per cm3 7.1
S Neutron source, neutrons/cm3-sec 7.1
S Fuel element surface area 11.0 and 13.0
n Fission neutrons produced per thermal 7.1

neutron absorbed in fuel material
f Thermal utilization 7.1
K, Keo Multiplication factor 7.1
Brzn Material buckling 7.1
Bg Geometrical buckling 8.1
L Diffusion length 7.1
P Resonance escape probability 7.2
€ Fast fission factor 7.2
P Non-leakage probability 7.2
Py Thermal neutron non-leakage probability 7.2
Pg Fast neutron non-leakage probability 7.2
& (T, E) Neutron flux in space and energy 8.1, 8.8
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n(r, E)
n(T, E,Q)

% (7)

$ (E)

& (7, E)
Qo
K(r)

m»g
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Description
Space part of & (r, E)
(See Section §. 2)
Extrapolated slab thickness
Slab thickness
Extrapolation distance
Disadvantage factor
Distance, position
Extrapolated sphere, cylinder radius
Distance, position
Bessel function, first kind

Inverse diffusion length

Neutron densities

Neutron scalar flux

Direction vector
Displacement Kernel
Age, slowing down area
(See Section 9. 2)
Nuclear mass number

Average lethargy gain per collision
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NOMENCLATURE (Cont.)

Description
Lethargy
Migration area
Reflector savings
Core flux
Reflector flux
Fast flux
Thermal flux
(See Section 10. 3)
Fuel volume
Moderator volume
Average flux in fuel element

Average flux in moderator

Bessel functions

Excess absorption

Relative absorption
Resonance utilization factor
(See Section 12)

Effective resonance integral
Volume advantage factor
Fuel mass

Importance function
Statistical weight

Variation in C

Variation in 2y

*Section Number
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‘1. INTRODUC TION

This part of the lecture series consists of two lectures on the theory
of homogeneous and heterogeneous nuclear reactors. The diffusion theory
model will be the main topic of discussion. I will talk about the ideas on
which elementary reactor theory is based and show a list of results for
the one-group and two-group diffusion theory approximations. You will be
able to do a rudimentary design of a slow reactor on the basis of these
lectures and the content of the lecture notes. Judging from the experience
of my students at the University of Cincinnati, it will take you from 20 to
60 hours to first complete an acceptable, elementary design analysis.
(See Section 15.0)

No proofs or derivations will be given in this coverage but the lecture
notes point out where proofs and derivations can be found. In a practical
sense it is appropriate to leave out detailed considerations both in the
lectures and the notes. Reactor theory, like any other technical topic,
can only be learned through intensive self-study and the working of lots
of problems. This set of two, short lectures cannot possibly give you a
detailed understanding of reactor theory. It is therefore meant to serve
two particular purposes: (1) It should teach you what are the important
concepts in reactor theory and indicate classical references you can read
if you feel an urge to understand these concepts. (2) It should provide you
with a list of steps to follow in the execution of a rudimentary reactor
analysis if you either feel the urge or are constrained to compute without
the advantage of understanding what you are doing.

These notes are based upon a relatively small number of sources (four).
These sources are listed below together with an alphabetic designation
symbol which is used in the text to indicate the source of a particular
statement or to point out where one can obtain a more comprehensive
coverage of a particular topic. For example, (D, 129-134;156-159) means
"look at pages 129-134 and 156-159 in Neutron Transport Theory by B.
Davison".

Symbol Reference
D B. Davison, Neutron Transport Theory (Book), Oxford Press
(1957)
ww A. M. Weinberg and E. P. Wigner, Physical Theory of Neu-

tron Chain Reactors (Book), University of Chicago Press
(1959) Second Impression




Symbol Reference

e

GE S. Glasstone and M. C. Edlund, Elements of Nuclear Reactor
Theory (Book), Van Nostrand Company (1958) Seventh Printing

CPH Case, Placzek and de Hoffman, Theory of Neutron Diffusion
Vol. T (1952), U. S. Chamber of Commerce

Each of these references enjoys an excellent reputation and can be found
in any good technical library. CPH contains extensive tabular results and
graphs of important functions in diffusion theory. After reading GE, one
should go on to D, WW, and CPH to refine his understanding of reactors
and neutron transport. D and CPH require a knowledge of complex
variables. ‘

10




Ll

2. CHAIN REACTOR (WW, 168-180; 1-18)

The first concept to learn is the idea of a chain reactor. A chain reactor
involves two essential parts: (1) fuel and (2) chain carriers. In a chain re-
actor, the interaction of a chain carrier with the fuel must produce the
following: (1) the liberation of energy and (2) new chain carriers. Chain
carriers are produced anew by the same energy-liberating process which
they induce when they interact with the fuel.

A chain reaction is self-sustaining if and only if the rate at which chain
carriers are produced is greater or equal to the rate at which chain
carriers are expended. If the production and expenditure rates are equal,
the reactor is said to be critical and in this state its power output is
constant.

Our concern will be with nuclear chain reactors. In this specific instance,
the fuel is a collection of fissionable nuclei and the chain carriers are neu-
trons. The energy-liberating reaction is fissioning of the fuel nuclei which
is induced by neutron absorption. Hence, each fission event in a nuclear
reaction corresponds to the expenditure of one neutron, i.e., one chain
carrier.

11



3. CRITICALITY (WW, 168-180)

A number called the criticality factor is used to represent the degree
to which a nuclear chain reactor is self-sustaining. Many people take it
for granted that the criticality factor, C, is a constant but this is not
true - the criticality factor need not be constant in the general sense.
In general, the criticality factor is defined as the ratio of the neutron
production rate to the neutron loss rate. This defines the so called dynamic
criticality factor. When the reactor is critical, C is a constant by defini-
tion, i.e., C =1 for a critical reactor. But when the reactor is ndt in the
critical state, the neutron production and loss rates contain energy de-
pendent transients and C is time dependent.

Generation Model - For the present we will use the idea of criticality
given by the generation model. This will work as long as we deal only with
critical systems or near-critical systems, i.e., 0.9 <C < 1.1. In the
generation model, one assumes that the reactor process can be described
in terms of a number of successive neutron generations wherein the n-th
generation of neutrons is solely responsible for the production of the
(n + 1)-th generation. This is a typical biological picture. In this model,
the criticality factor is tacitly assumed to be a constant and is defined to
be the ratio of the neutron populations in two successive generations.

Specifically, if N;, represents the total neutron population for the n-th
generation then the criticality factor is

C = Np/Ny_1 _ (3.1)
and
N, = Ny c?-1 (3.2)

where Ny is the neutron population of the first generation. Now this way

of looking at things assumes that it is meaningful to ascribe a temporal
separation between successive generations which is also a constant. This
time interval is denoted by £ and is called the generation time. In this
context, the time interval between the first and n-th generation is (n-l)/ .
And, if one considers the first generation as existing at time zero, the
time of the n-th generation is t, = (n - 1)/Z. This identification allows one
to get a neutron production rate equation which involves only the criticality
factor and the neutron population at a time t. The result is

dN/dt = N(logeC)/£
~ N(C - 1)/& (if C is close to unity)
12
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From this equation one finds that the neutron population at time t is
N(t) = N(t = 0) exp [{C = 1)t/£] (3.4)

The zeneration time for thermal reactors is about 0.1 sec. Hence, if
C =1. 005, for example, the reactor power level will increase by
exp (0. 05) = 1. 06 in one second and 1. 65 in 10 seconds. This is a suffi-
cient time for automatic control systems to dampen a power excursion
and return the reactor to a critical state. If C = 0. 995 the reactor power
level will decrease by 1. 06 in one second.

When the criticality factor is less than unity, the reactor is said to be
subcritical; “vhen the criticality factor is greater than unity the reactor
is said to be supercritical. The power output of a non-critical reactor
is a function of time; only when the reactor is critical is its power output
constant. In order to increase the power level of a reactor from P; to
P9 > Py, one ailows it to go supercritical, for a time sufficient for the
fission rate to increase to the desired level Py, and then returns it to
the critical state. It will then provide a constant power output Py. The
power level is reduced by allowing the reactor to go subcritical until
the power level falls to the value desired. (See above numerical example
for C=1.005 and C = 0.995.)

13




4. NEUTRON REACTIONS WITH NUCLEI (D, 1-14)

We will discuss the reactions of neutrons with nuclei in a very abbreviated
manner. Only those aspects of direct concern to reactor calculations will be
mentioned. For our purposes there exist two general types of neutron-
nucleus reactions. One of these is the absorption reaction and the other is
the scattering reaction. A neutron is absorbed by a nucleus and disappears
from the scene in an absorption reaction. Excepting the instance wherein
neutron absorption induces fissioning of fuel nuclei, we will not concern
ourselves with the possible consequences of neutron absorption other than
that it represents the loss of one chain carrier. In the scattering reaction,

a neutron collides with a nucleus, transfers kinetic energy to this nucleus
and then bounces off, somewhat less energetic, and in a different direction
from that in which it was traveling prior to the scattering collision. If the
neutron scatters elastically, both momentum and kinetic energy are con-
served during the collision. If the neutron scatters inelastically, momentum
is conserved but kinetic energy is not conserved, and a gamma ray is
emitted from the target nucleus. All neutron scattering is assumed to be
elastic scattering in these notes. We will not discuss inelastic scattering.

One particular type of absorption reaction, namely, the fission reaction,
is clearly important in reactor theory; without the fission process nuclear
reaction could not exist. The fission process consists of a nucleus splitting
into fragments. Any nucleus can be made to fission if it is struck by a
sufficiently energetic neutron. The fissioning of uranium is the principal
fission reaction used in nuclear reactors. Uranium nuclei are the reactor
fuel. Uranium-235 (U235) undergoes fission upon absorption of both fast
and slow neutrons, and, in fact, is more likely to fission the smaller
the neutron energy. U235 requires fast neutrons with energies of at least
1 meV to induce fission to an appreciable extent. In the fission of a U235
nucleus induced by slow neutrons, several neutrons are emitted. Table
4. 1a lists the probabilities for the emission of n neutrons per fission in
U235. The average number of fission neutrons is denoted by the symbol v.
v = 2.5 for U235, Tables 4. 1b and 4. 1c list v, microscopic cross sections
(see Section 5) and 7 (see Section 7) for U, U235, Pu239 and U233,

About 0. 9925 of all fission neutrons emitted are ejected within a time
interval of 1014 sec. These fission neutrons are called prompt neutrons.
Prompt neutrons are emitted from the highly excited fission fragments
into which the uranium splits upon fissioning. The remaining fraction
(0. 0075) of the fission neutrons are emitted by the daughters of the radio-
active fission fragments. These neutrons appear anywhere from fractions
of a second to minutes after the fission event and are called delayed neu-
trons. Table 4. 2 lists the six delayed neutron groups for fissioning of

14




TABLE 4. 1(a)

PROBABILITIES FOR EMISSION OF n NEUTRONS
PER FISSION IN U235 (Ww, 114)

Neutron n
" Energy 0 1 2 3 4 5 Y = Ngye
80 keV 0.02 0.17 0.36 0.31 0.12 0. 03 2.45
1. 25 meV 0.02 0.11 0.30 0.41 0.10 0. 06 2.65

TABLE 4. 1(b)

THERMAL* CROSS SECTIONS, AND n AND v FOR U235
NATURAL U AND Pu239 (WW, 124)

U235 U Pu239
Og 10 barns 8. 3 barns 9.7 barns
Oy 697 barns 7.7 barns 1025 barns
o 579 barns 4. 2 barns 738 barns
n 2. 07 1. 34 2.09
v 2. 47 2.91

*0. 025 eV neutrons

TABLE 4. 1(c)
7 AND v FOR 1 meV NEUTRONS (WW, 129)

7235 U233 Pu239
n 2.3 2. 45 2.7
v 2. 65 2.7 3.0

15
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U239 and their total yield. Although the delayed neutron yield is small,

their long delay times serve to increase the average ''generation’ time, ‘ ‘
[, from the value 10~3 sec, which would occur if only prompt neutrons |
were emitted, to about 107+ sec. The existence of delayed neutrons,

therefore, makes reactor control possible.

Problem: If-only prompt neutrons were emitted, by what factor would
the reactor power level increase during a one-second excursion with
C=1.0057?

Answer: e5 & 150.

The energy distribution of prompt neutrons is

f(E) = 0. 484 exp (-E) sinhv 2E (See Figure 4.1) (4.1)

The meaning of f(E) is as follows: The fraction of all prompt neutrons
emitted with energies in the range dE at E is f(E)dE. The average prompt
neutron energy <E> is

<E>= [T Ef(E)dE = 2.0 meV (4. 2)
0
The most probable energy is 0. 72 meV and one-half of all prompt neu- .

trons emitted have energies below 1. 6 meV. The fraction F(E) of all prompt
neutrons emitted which have energies less than E is plotted in Figure &. 2.
Nearly all fission neutrons are emitted with energies below 10 meV. When
the fission spectrum is mentioned in textbooks and technical articles it is

to the prompt neutron spectrum that the authors refer.

The power output of a reactor is determined by the number of fission
reactions occurring per second. The energy release per fission event is
about 200 meV which corresponds to 3.2 x 10-11 watt-sec. Hence
3.1 x 1010 fission events per second are required to produce 1 watt of
power.

3.1 x 1010 fissions/sec = 1 watt of power (4. 3) o

On this basis33 the energy supplied when all U235 nuclei contained in
one gram of U2 5 undergo fission is approximately one megawatt-day.

Remarks:
1. 1eV=1.6x10"12 ergs = 1.6 x 10°19 watt-sec.
2. 1meV=1.6x10"5 ergs=1.6x 10-13 watt-sec. ‘

16
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| Fig. 4.1 - Prompt neutron energy distribution f(E). This
distribution (spectrum) applies to U235 and
Pu239
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3. The number of atoms N, of a given element with atomic weight Ay,
contained in one cm3 of material is

N, = T x6.025 x 1023 per cm3 (4. 4)

A,

where m is the mass of the given element per cm3 of material. In a
monoatomic material m = p, the mass density.

19




TABLE 4. 2
DELAYED NEUTRON CHARACTERISTICS (WW, 136)

Half- Decay .
Life Constant  Energy Number Per 100 Fission Neutrons
54 0. 0128 0. 25 0.085 0.020 0.03 0.015 0.01
22 0. 0315 .56 0. 35 . 075 .18 .17 . 06
5.6 0. 125 .43 0. 45 . 105 .22 .28 . 045
2.12 0. 325 . 62 1. 20 . 075 .23 .71 . 085
0. 45 1. 55 0. 42 0. 45 0. 025 . 07 .42 0. 03
0. 15 4.5 - 0. 09 - 0. 02 0. 15 -
2.6 0. 30 0.75 1.75 0. 23
Number of delayed neutrons
per 100 fissions 6.3 0.78 1. 80 4.4 0. 67

20




TABLE 4.3
CONSTITUTION OF NATURAL URANIUM (WW, 5)

238 5235 y234
Abundance* 99.28% 0. T1% 0. 0058%
Half-life 4.51x109 yr  7.1x108 yr  2.6x10° yr
*Weight percent
TABLE 4. 4

TYPES OF NUCLEAR REACTORS (WW, 15)

Point of View Type

Energy of neutrons Thermal, intermediate, fast*
causing fission

Fuel Natural U, U235, y238 pu239
Moderator H20, D20, Be, C, BeO, Be2C
Cooling System Conduction, circulating coolant,
circulating fuel, boiling
Structure Homogeneous, heterogeneous,

solid or liquid materials

*See Table 7.1 for associated neutron energies.

21




5. CROSS SECTIONS AND MEAN FREE PATH (D, 1-14)

When a neutron strikes a nucleus the type of reaction which will occur
is not absolutely determined in the sense that one can say "this particular
reaction will certainly be a scattering reaction' or "this particular re-
action will certainly be an absorption reaction."” However, it is possible to
state the probability that a particular neutron-nucleus collision will result
in a scattering reaction or in an absorpticn reaction. The practice is to
represent the probability that a particular type of reaction will occur by
stating the cross section for that reaction. Two types of cross sections
are used, the microscopic cross section, o, and the mactmscopic cross
section, Z. The microscopic cross section refers to neutron collisions
with individual nuclei of a specific type while the macroscopic cross
section is used to specify the collision probability of neutrons in bulk
material which may be made up of several different nuclear types. The
microscopic cross section depends only upon the neutron energy and the
type of nucleus involved. The macroscopic cross section depends, in
addition, upon the number of nuclei contained in a unit volume of material.

5.1 MICROSCOPIC CROSS SECTION

The microscopic cross section for a particular type of reaction is de-
fined in terms of the number of neutron-nucleus reactions induced in a
thin sheet of target material by a monoenergetic neutron beam which
strikes the target sheet at normal incidence. In this definition the target
material contains only one nuclear species.

N (number of neutron-nucleus reactions/cm2-sec)
o= (mimber of nuclei/cm?2) x (number of incident neutronsfcmz-sec)

_ Fraction of target nuclei reacting per seoand
Number of incident neutrons/cmy—sec

The dimensions of the microscopic cross section are cmz, the dimen-
sions of an area. The unit used to specify microscopic cross sections is
the barn; one barn is 10-24 ¢m?2.

Let o0g and 0, be the scattering and absorption cross sections for neu-
trons of a given energy and a given type of target nuclaus. Their sum

0=0gt 0y (5.2)

is called the total microscopic cross section.

22




5.2 MACROSCOPIC CROSS SECTION

The macroscopic cross section for a particular type of reaction is de+ .~
fined as the product of the microscopic cross section for that reaction and
the number density of nuclei, N, i.e., the number of nuclei per unit = -
volume.

Z =0oN (5.3)

The dimensions of the macroscopic cross section are cm-1. It is the
probability per unit length of neutron travel for a neutron-nucleus
reaction.

Z = Probability per unit length of neutron

travel for a neutron-nucleus reaction. (5.4)

5.3 MEAN FREE PATH

The reciprocal of the macroscopic cross section is the neutron mean
free path, A.

1
k—‘i (5.5)

A is the average distance between successive neutron collisions. The
free path between successive neutron collisions is exponentially distrib-
uted. The normalized differential free path distribution is,

X

p(x)= ZTe-ZX=_ ¢ A (5.6)

bl

and

[Fpxdx =1
o !

The meaning of p (x) is as follows: the fraction of all freeppaths ending
in the interzal dx about x is p(x)dx. The fraction F(x)<xq) of all free
paths of length x less than x is,

-Zx
F(x<xo) = ["°ZeZXdx=1-e = (5.7)
(o]

F(x<xo) -is'the cumulative free path distribution. It is interesting to
note that more than half of the free paths are less than A as,

23




F(x<)) = [*De-DXdx = 1-e~Z = 0. 632 (5.8)
o]

(Remember ZX = 1).

Problem: Compute the fraction of all free paths less than 2, 3x, 4A, 52,
5.3\, 9x. Ans. 0.845, 0.950, 0.982, 0.993, 0.995, 0.9999.

Problem: Compute the average free path over the free path range A <x<e<e,
Hint: See Remark (4) at the end of this section.

Ams. <xX>) o = ){ wxp(x)dx/ )\f mp(x)dx

= (2x/e))(1/e) = 2x

Problem: Compute the average free pa.th over the free path range
0<x<A.

Ans. 2(e-2)/(e-1) = 0.418

5.4 CROSS SECTIONS FOR POXYATOMIC MATERIAL

Consider now a material composed of n different nuclear types. Let
Zj and Nj be the total macroscopic cross section and the number density,
respectively, for the i-th nuclear type. The total cross section for the
material is,

Z =Z1Ny +ZgNg + ... +Z Ny (5.9)

and the neutron mean free path is,

r=1/Z

Similarly, the macroscopic scattering cross section for the material is,

Tg=ZgINy +ZggNg +... +ZgpNy (5.10)

and the macroscopic absorption cooss section is,

Za =231N1 +Z59Ng + ... ZanNp (5.11)
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Figure 5.1
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The scattering mean free path is 1/Z 5 and the absorption mean free path
is 1/3,. One sees that Ag, X,, and X are related as,

) =alts
Aa+ig

(5.12)

Remark (1): Note that cross sections are additive, like resistances in a
series circuit; and that mean free paths combine like re-~
sistances in a parallel circuit.

Remark (2): X is the average distance between successive neutron col-
lisions.

Remark (3): Ag is the average distance between successive neutron
scattering collisions. It is always true that Ag 2 X because
ES = Z .

Remark (4): If p(x) is the normalized differential distribution for a ran-
dom variable x then

<X>3p = éfb xp(X)dX/f p(x)dx (5.13)
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6. NUMBER OF REACTIONS PER UNIT VOLUME PER SECOND
(D, 41-42); (GE, 148)

Up to now we have looked at the way to describe the probability that a
single neutron will experience a reaction of a particular type in a single
collision event. In reactor calculations, however, one is concerned with
the combined effect of all the collisions of many different neutrons with
nuclei. It is possible to do reactor calculations by using the neutron
number density, n, to represent the neutron population. However, in
most work on reactor calculations, a quantity called the neutron flux, ¢,
is used rather than the number density. The relations between n and &
are described in Section 8. 8. For the present it is sufficient to state that
the neutron flux ¢ is the neutron track length traced out per unit volume
in one second. This is an important concept and bears repeating. ..

"the neutron flux is the neutron track length traced out per unit volume
in one second.” Is it the track length traced out by just one neutron?
The answer to this question is: "No." It is the track length traced out
by all neutrons in that unit volum-e_i)er second. This being the case, if
one multiplies the neutron flux by the macroscopic cross section the
result is the number of neutron-nucleus reactions per unit volume per
second, i.e., the reaction rate per unit volume. This follows because
Z is the probability for one reaction per unit length of neutron travel.
The following table summarizes the reaction rate densities with which
we will be concerned:

Z ¢ = total reaction rate density

Z4® = absorption reaction rate density

6.1
Zg® = scattering reaction rate density (6.1)
Zs® = fission absorption reaction rate density

s, Zgand Zj are, respectively, the absorption, scattering and fission
cross sections. In a homogeneous reactor

_ mod fuel
Z,=2Z, t2Z4

d (6.2)
mo
Zg=2Zg + Zg fuel
where ' mod' and 'fuel' signify moderator and fuel materials, and
fuel fuel fuel
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where 'nfa' means 'non-fission absorption.' The non-fission absorption
cross section for the reactor is

mod fuel
nfa=2%a t Znfa (6. 4)

z
Problem: 0g =10 barns, 0, =600 barns and of = 500 barns. Assume an
atomic weight of 235 and a mass of 19 grams per cmS. I & =
1015 cm/cm3-sec what is the scattering reaction rate per cm3
and the non-fission absorption rate per cm3? Hint: N =

(19 x 6. 025 x 1023/235) at/cm3, =g = Nog = [19x6.025x1023/235]
[10 x 10724) em™1, oy = 0, - op.

Problem: Compute the neutron mean free path from the data given above.

Hint: 0 = 05 + Og

28




7. DIFFUSION THEORY (WW, 181-218); (D, 94-102); (GE, 90-136)

Homogeneous Infinite System

Because most neutron cross sections behave, approximately, as
o « 1/VE, the slower is the neutron the larger is its reaction probability.

Hence, in order to minimize the amount of fuel required to make a reactor
operate at a prescribed power level, slow neutrons are usually employed

as the primary agent for inducing fission. Reactors for which this is true
are called thermal reactors because the kinetic energy of the neutrons
which induce most of the fission events corresponds to the thermal kinetic
energy of molecules at room temperature, i.e., about 0. 0254 eV (1 eV
is equivalent to 11, 600°K). The kinetic energy of a neutron is KE = 1/2
my v2 ergs where my is the neutron rest mass in grams and v is its
velocity in cm/sec. (mp = 1.675 x 10-24 grams) The following neutron
energy-temperature-velocity table is useful.(Table 7.1) E is the neutron
energy. (As an exercise start with column 1 and compute column 3; then
do the converse. Remember 1eV = 1.602 x 10-12 ergs.) T is obtained
from the relation E = kT where k= 1.38 x 1016 erg/oK is Boltzmann's
constant. T(°C) = T(CPK)-2730K.

It can be seen from Figure 4.1, however, that most fission neutrons are
emitted with energies in the meV range. A means for slowing these fast
neutrons to the thermal energy level is required in thermal reactors.
This slowing down or moderation, as it is called, is accomplished by
mixing non-fissionable material with the fuel. This material is called
moderator material. Fast neutrons slow down largely via elastic
collisions with moderator nuclei. A good moderator material should
have an extremely small absorption cross section and be composed of
light nuclei. Light nuclei are preferable to heavy nuclei because neutrons
lose a larger fraction of their energy in elastic scattering collisions the
lighter is the target nucleus.

Before we concern ourselves with neutron slowing down, it will be a
good idea to look briefly ‘at a hypothetical monoenergetic reactor in
order to single out the complications that exist just as a consequence of
reactor composition. In this reactor, fuel and moderator nuclei are taken
to be homogeneously mixed (See WW, 378, line 3) and all neutrons will
be assumed to be thermal neutrons, including fission neutrons.
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TABLE 7. 1

NEUTRON ENERGIES AND 'TEMPERATURES'

E(eV) T (°K) v(cm/sec)
0.001 11.6 4. 37x10%
0,025 290 2. 19x10°
0.034 400 2, 6x10°
0.052 600 3. 1x109
0.069 800 3. 6x10°
0.086 1000 4. 0x10°
1.0 1. 16x10% 1. 38x106
100 1.16x108  1.38x107
104 1.16x108  1.38x108
106 1.16x1010 1. 38x109
108 1. 16x1012 1. 28x1010
1010 1, 16x1014 2.99x1010
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Cold
Thermal
Thermal
Thermal
Thermal
Thermal
Slow (resonance)
Slow
Intermediate
Fast
Ultrafast
Relativistic



7.1 MONOENERGETIC NEUTRONS

The diffusion approximation for describing monoenergetic neutron
transport in an infinite system is based on the assumption that Fick's
diffusion equations are valid. There are two such equations. The first
one connects the neutron current J with the gradient of the neutron flux.

J=-Dgrad & (7.1)
(grad ® =1 08/0x + ] 08/9y + ko d/0y)

The constant D is the neutron diffusion coefficient. For the time being
we will assume D is a known quantity. The second equation states that
the rate at which the number of neutrons in a unit volume (n) increases
as a result of neutron diffusion is -

(3n/3t)py = - div § = D grad? & (7.2)
grad? & = 82¢/8x2 + 32¢,/0y2 + 928/822

These equations are valid if;

1. The magnitude of grad & is small

2. Neutron scattering is isotropic in the laboratory coordinate system
3. D is a constant

4. The neutron cross section is constant

From Fick's equations and our understanding of how to compute the
absorption reaction rate density, ,®, it is possible to write down the
neutron population balance equation for an infinite system. This equa-
tion is,

on/at = 2 -
dnv,‘at D grad ®+8 -2Z;9 (1. 3)
(a) (b)
(a) is the rate at which neutrons are added per unit volume, S being

a source term, i.e., neutrons per cm3-sec supplied by some
neutron source _

(b) is the rate at which neutrons are lost per unit volume.

If 8n/8t = 0, the neutron population is stationary and the system is
critical.

A natural question, at this point, is: '"What is the source term S?"
One answers this question by remembering that there are Z¢® fission
reactions per unit volume per second and that an average of v neutrons
are emitted per fission event. This reasoning leads to,
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S=v Ef‘I’ (7. 4)
and the balance equation, for a critical system becomes
mod fuel

Dgrad2 &+ p Zp® - 2,8=0 (Tz=3, +3Z5 ) (7. 5)

dividing by D it follows that

grad2e + [(.”E.fD_EB.)\ & =0 (7. 6)
2 2 _ 2 — FZf - Ea X
grad®® + B, ®=0 B, = (*See Remark)

Another symbol for the operator grad2 is v2 (Laplarian) which will be
used in all subsequent balance equation statements. The number By, is
called the material buckling of the system as it depends only on the com-
position of the reactor. (When we get to finite reactors it will turn out
that one designs a critical finite reactor by finding a size such that the
associated geometrical buckling, By, for the finite geometry is just equal
to the material buckling associated with an infinite system of the same
composition. (See Section 8.1.)

By definition, the criticality factor for this infinite system is

C= Neutron Production Rate
~ Neutron Loss Rate

_vzgd
: 5.3 ' = (7.7)

v
a

-

N

Conventionally, the criticality factor for this system is written as,

= [Zguel

= = *
Cc Fiel ‘ nf (*See footnote) (7. 8)
Ta | Z,
where
sz
M= el (7.9)
Zg

*In most text books the quantity xf for an infinite monoenergetic system is denoted by k and called the
multiplication factor. In an infinite system C and k are equal but in finite systems neutrons can leak out
and C < k whenever leakage can occur., Some texts use the notation k= 7ito eq:phasize that the
multiplication factor for an infinite system is being talked about.
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f= (7. 10)

1 is the number of fission neutrons produced per neutron absorbed in
the fuel and is a property of the fuel material alone. n= 2. 07 for U235
and 1. 34 for U (U denotes natural uranium).

f is called the thermal utilization factor. It is the fraction of all thermal
neutrons absorbed which are absorbed in the fuel.

Remark:

Diffusion theory formalism uses the quantity L2 = D/ Z4 called the thermal
neutron diffusion area or diffusion length squared. Physically, L“ is one-
sixth the mean square distance from the point at which a neutron starts
diffusing to the point where it is absorbed. Using this notation one sees
B%n can be written as

2

m:

B° =(k - 1)/L2 (7.11)

and the balance equation then becomes

v2<1>+<k‘1> &=0 (7.12)

L2

This form of the balance equation is used frequently.

7.2 THERMAL AND FAST NEUTRONS

Retaining an infinite geometry, to avoid the complications of neutron
leakage, we will now introduce fast fission neutrons rather than assume
all fission neutrons are emitted at thermal energy as we did in (7.1). In
effect we now have two groups of neutrons (1) fast neutrons and (2) thermal
neutrons. Some of the fast neutrons will be absorbed while slowing down
to thermal energy. The fraction of all fast neutrons which escape absorp-
tion during moderation (slowing down) is represented by the symbol p.
A portion of the fast neutrons absorbed during moderation will cause
fission, i.e., all fissions are not caused by thermal neutrons. This effect
is represented by the fast fission factor €. € is the ratio of number of all
fission events occurring to those particular fission events induced by o
thermal neutrons. -In thermal reactors, € is barely larger than unity, in fast
reactors it is, of course, quite large or they wouldn't be called fast reactors.
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The source term for the thermal neutron balance equation is now

S=plevZ;®] (7.13)

where & is the thermal neutron flux and Z¢ is the thermal neutron fission
cross section. The balance equation is

DVv2 & + pevZed - 2,8 =0

v2s +[B@£D;§%J & =0 (7. 14)
v28 + B2 &+ 0 B2 . RVIL - Zg

D
The criticality factor is by definition

_ Thermal Neutron Production Rate

C = —Thermal Neutron Loss Rate (7.15)
- pevsd -
S50 penf

(remember that n= v Z¢/Zjy)
Because we have included both fast and thermal neutrons in this for-
malism, it is general and the multiplication factor k = penf, we obtain

is the standard infinite medium multiplication factor quoted in the text
books for a homogeneous system.

k = penf (7.16)

The above statement for k is called the four-factor formula.

The criticality factor for a finite reactor, can be expressed as

C =k P; Py =kP (7.17)
P =P Ps
where P; and P; are, respectively, the non-leakage probabilities for
thermal and fast neutrons. The particular mathematical expressions

for P; and P; depend upon the type of reactor one is concerned with and
the specific theoretical model used to compute these probabilities.
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Using the relation L2 = D/ Z, and the four-factor formula, the balance
equation can be written as

o -1
v23 + 527 & =0 | (7. 18)
and B?nas
2 k-1
Bm='zz- ‘. (7.19)

Figure 7.1 is a schematic representing the neutron cycle for a critical
thermal reactor.
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Fig. 7.1 Neutron Cycle for Critical Thermal Reactor (GE, 202)

Critical Condition

kaPt =1

Thermal Neutrons

Absorbed in Reactor

Start->

ka [l—Pt]
Thermal

Neutrons

AN

Ieak Out

of Reactor

kP, = [nfep]P,
Thermal Neutrons
Produced Via Slowing

Down of Fast Neutrons

nfep(l-p.]
Fast Neutrons Leak

Oout of Reactor

N

nfell-p] Fast

Neutrons Absorbed

nfe Total

Fast Neutron

WV

f Thermal Neutrons

Absorbed in Fuel

\

— sofuel o
faf/za Fission

Events

fuel

nf = VEZ./%
Fast Neutrons Produced

by Thermal Fission

Fast
\/ Fission

(€)

During Slowing

Production

Down

36




8. BARE HOMOGENEOUS REACTOR (WW, 378-412); (GE, 191-224)

The theory of the bare homogeneous reactor is fundamental to all reac-
tor theory. It is relatively easy to use and in the multigroup formulation
quite accurate. (In multigroup formalism, the neutron energy range is split
up into several subranges, each subrange being called an energy group.
Neutrons in each group are treated as if they were monoenergetic so that
diffusion theory can be used. Each group receives neutrons slowing down
from the group above it and, in turn, supplies neutrons to the group below
it. Except for their source terms, the equations for each energy group are
the same as the diffusion equation for thermal neutrons we looked at in the
previous section). We will treat Bare Homogeneous Reaction theory in
terms of the First and Second Fundamental Theorems of Reactor Theory,
which will be stated without proof.

8.1 FIRST FUNDAMENTAL THEOREM OF REACTOR THEORY

First Fundamental Thegrem:

1. The stationary neutron flux &(r, E) in a critical bare reactor is
separable in space and energy.

® (7, E) = ¢(E) ¥ (7) (8.1)

2. The space distribution of the fluxgF (r) is the fundamental solution to
the wave equation

v2¢ + B2 = 0 (8.2)
By fundamental solution is meant a function which is positive throughout
the reactor and which vanishes on the extrapolated boundary of the reactor.
The extrapolation distance d is 0.7, according to transport theory, where
A is the neutron mean free path. The constant B2 in the equation for ¥ is
determined entirely by the size and shape of the reactor. It is called the
geometrical buckling.

The design of a bare critical reactor amounts to achieving equality
between Blzn for the chosen material composition and Bé for the specific
geometry concerned.
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8.2 ALL THERMAL REACTOR (GENERAL)

Just as we started the discussion of inf‘inite“ réa,ctoijs with a computation -

for the all-thermal or one-group approximation we will also begin the dis-
cussion of finite reactors with a simple one-group treatment. Because all
neutrons have the same energy E, & (r,E) = constant x ¥(r)= &(r). At

a given point r in the reactor we have that, from the standpoint of ‘reactor
composition, ‘a reactor is critical if DV2 ® + (VZf -23)®=0, i.e.,

p) k-1
VcI:+——2—<I>O

The First Fundamental Theorem states that, from a geometrlcal stand-
point, a reactor if v2s +B2 & =0.

g
Hence for the critical state it follows that
2 k-1
Bg =5 (8.3)

We must now stop a moment to introduce the static criticality factor
(approximation) and determine its value for a bare, all-thermal reactor.
The idea of the static criticality factor is based on the following approxi-
mation which is valid if the criticality factor is close to unity, i.e., 0.9
< C<1,1. In the actual reactor

fuel
C=kpP=v|—2L_||22a_|p (8. 4)
fuel ) .
Z)a ~a

where P is the neutron non-leakage probability. One defines the number
V' to be that value of v which gives

fuel
Vo= ! == : : .
C v quel >y Pl|=1 _ | (8.5)

In other words, »'is the particular value of v requlred to make the reac-
tor critical. The static criticality factor is defined as

c-V | (8.6)

If v' > v, Cis less than one and the reactor is subcritical. If ' < v, C
is greater than one and the reactor is supercritical.
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On this basis, the base reactor would be critical if k had the value k'
given by

k" -1

where k' = V' Z4/2,, i.e., V' =Zgk' /Z;.

Solving for k' and ' on obtains

K =1+ Bg 1.2 | (8. 8)
and
v =2, (1 + B2 L2)/5; (8.9)

By the definition of k,
v =Z,K/Z¢ (8.10)

Now, having expressions for the numbers ' and v, the static criticality
factor can be written as

v o k
C—7 = (8.11)

2.2
I+BgL

In general, from the neutron economy structure,
C=kP (8.12)

hence, it follows at once that the non-leakage probability P for an all-
thermal bare reactor is

P=-—-L—— (8.13)

2.2
1+BgL

This result alwags holds for the thermal neutron group, independently
of the manner chosen to represent fast neutron behavior.
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8.3 ALL-THERMAL 3LAB REACTOR (COMPUTATIONAL EXAMPLE)

The ideas listed above can be somewhat fixed in one's head by carry-
ing through a simple example. Consider a slab reactor of physical
thickness h. (See Figure 8.1). Let x = 0 be the center plane of the slab.
According to the First Fundamental

e H >

I |

: I

. |
LT h 1 H=h+2d
—>ld | ' — d «—

19 (%) : d=0.72=0.7/%

I ] (d is the extrapolation

: I distance)
.V //\:

I I

[ | |

I I |

| | I

[ " ! |

Fig. 8.1

Theorem, & vanishes at x = +(H/2) and is positive on the interval
-H/2 < x < H/2. The fundamental solution to

v2e +BE & =0 (8.14)
gives
Bg = (1/H)2 Slab Reactor (8.15)

The fundamental solution, itself, being
& (x)=Kcos (rx/H) (8.16)

The constant of integrationK is determined by the power level of the
reactor. The power produced by a slab reactor is infinite, however, if
one considers the power P generated in a column of length h through the
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slab with a base area of 1 cm?2 and with its longitudinal axis normal to
the slab faces, the constant K can be evaluated.

The number of fission events per second in this column is the integral
of 2¢® over the physical thickness of the slab.

Fission rate = KZ¢ fh/z cos (mx/H) (8.17)
“h/2

= ZKZf(—?)sin (—g%) (8.18)

Because 3.1 x 1010 fission per sec constitute a power production of 1
watt, it follows

2KX¢

P==3

/E_I—\X 10-10 x sin /Z—h}\ (watts) (8.19)
\ 7/ \ 2H)

If P were one watt, then K would be
K =[3.17 x 1010]/[22H sin (7h/2H)] (8. 20)

The power distribution for a reactor is:

Power Dist. = 200 - =& meV/cm3-sec

g ®
= 3
31x10 watts cm (8.21)

In a thermal reactor, therefore, the shape of the power distribution is
the same as that of the thermal flux.

Problem: Compute the current of escaping neutrons at the faces of a
critical slab reactor.

. D D
Hint: J = —Agrad ®, Jx = 42 %/0x.

Problem: Compute the average flux in a critical slab reactor.

h/2
b

Hint: <& > = & dx/h

Problem: Given P = 0.1 megawatt, H = 142 cm, Z = 0. 8;compute ® nax
for a critical slab reactor.

Hint: Remember the extrapolation distance d.
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8.4 RECTANGULAR PARALLELEPIPED

Let a, b, c be the physical dimensions of a parallelepiped reactor,
along the x, y and z axes respectively, with the origin at the center
of the reactor. Let A=a +2d, B=b + 2d and C' = ¢ + 2d be the
extrapolated dimensions.

In this case

= (x)(5) +(e)

& (x,y,z) = Kcos (—E‘)cos (ﬂ—,y> cos(-%—?—) (8. 23)

The constant K is again determined by the power level of the reactor.

8.5 SPHERICAL REACTOR

Let r, be the physical radius of the reactor and R = ry + d the ex-
trapolated radius, then

Bg =(% )2 (8. 24)

& (r) =}I-<-sin(-%> (8.25)

The constant K is determined by the power level of the reactor.

8.6 CYLINDRICAL REACTOR

Let ry be the physical radius of the cylinder and h its length. Denote
the extrapolated radius by R = rg + d and the extrapolated length by H =
h + 2d and take the origin of the coordinate system at the center of the
cylinder. B2 and & (r, z) are then

g
BS = (3%@52 +( lH)z (8. 26)
& (r,z) = KJ0(2°§)5r) os(ﬂﬁz) (8. 27)

Jo the zero order Bessel function of the first kind.
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8.7 MINIMUM CRITICAL VOLUME

Reactors are usually designed to be critical at the smallest possible
volume for reasons of economy if nothing else. This is called the minimum
critical volume. Table 8.1 lists minimum critical volumes for three reac-
tor shapes. Note that,

TABLE 8.1
MINIMUM CRITICAL VOLUME

Minimum Critical

Shape Volume

. 3
Parallelepiped 161/By,
Cylinder 148/ B?n
Sphere 130/B3,

for a specified composition, i.e., material buckling Bzm, the minimum
critical volume for a sphere is less than that for any other shape.

8.8 SUMMARY OF DIFFUSION THEORY FORMALISM (MONOENERGETIC)

DV2& = number of neutrons gained per unit volume per unit time by
diffusion

k =vZa/D (Inverse Diffusion Length)
L = VD/Z, (Diffusion Length)

on _ D 23+8S- Za® (Neutron Balance Equation)
at

Gain Absorption
Loss

J=-DV$® (Diffusion Current)

e“r/L
47Dr

&(r) = (Diffusion Kernel for Unit Point Source)

<r2> =612 (Mean Square Diffusion Distance - three dimensions)

L
& (x) = - (Diffusion Kernel for Unit Plane Source)
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Bg = (1/a)2 + (1/b)2 + (1/c2) Rectangular Parallelepiped
Bé = (1/R)2 Sphere
Bg = (2.405/R)2 + (1/H)2 Cylinder (R, H)

Dynamic Criticality Factor:

_ Neutron Production Rate
"~ Neutron Loss Rate

Cd

Static Criticality Factor:
v
v = actual number of fission neutrons produced per fission

v' = required number of fission neutrons produced per fission so that
cC=1

Neutron Number Density n

n = number of neutrons per unit volume

n(E)dE = number of neutrons per unit volume with energy in the range
dE at E

n(E) = number of neutrons per unit volume per unit energy at E
o0
n = J n(E)dE

n(r) = number of neutrons per unit volume at r

n (¥, E) dEdF = number of neutrons in the volume element dr at r with
energy in the range dE at E

n(¥, E) = number of neutrons per unit volume per unit energy at ¥ and E
n(¥) = [n(F,E)dE

n(E) = [n(F,E)df

n= fdi" fn(i", E)dE

n(i-:> E,?Z) = number of neutrons per unit volume per unit energy per unit
solid angle at ¥, & and velocity in direction ©

n= [df [d® [n(T,E,Q)dE
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Scalar Neutron Flux &

& (T, E) = n (T, E) v (E) neutrons per cm2-sec, per unit energy at r, where
v is the neutron velocity magnitude associated with energy E, i.e.,

v=vV 2E/mp.

& (r, E) = track length traced out per unit volume per unit energy per second
at r by neutrons with energy E.

$(E)= [&(F,B)dr
&(F)= [&(T,E)dE
¢ = [df [&(F, E)dE

Macroscopic Cross Section 2

2 = No (N = number of nuclei per cm3)

% (E) = probability per unit of track length for a neutron of energy E to
react with nuclei

2= (E) & (E) = number of reactions per unit energy per unit volume per
second undergone by neutrons with energy E

Z (E) & (T, E) = number of reactions per unit volume per unit energy per
second undergone by neutrons with energy E at r

f = (E) & (¥, E) dE = number of neutron reactions per unit volume per
second at T

f * (E) & (T, E) dr = number of reactions per unit energy undergone by
neutrons with energy E

[df [Z(E) & (E, ) dE = total number of neutron reactions per second
Z g = scattering reaction cross section

Z g4 = absorption reaction cross section

Zs = fission reaction cross section

DB2 = leakage cross section (diffusion theory)
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9. FAST NEUTRON LEAKAGE

9.1 SECOND FUNDAMENTAL THEOREM

The fast neutron non-leakage probability P; is specified by the Second
Fundamental Theorem of Reactor Theory.

Second Fundamental Theorem:

The non-leakage probability for fast neutrons during moderation in a
uniform bare reactor* is the Fourier transform of the slowing down
kernel K(r).

(9.1)

*Note that nothing is said aboug the reactor having to be critical in
the Second Fundamental Theorem.

The slowing down kernel K(r) is defined as the number of thermal
neutrons created per unit volume at position r in an infinite system,
given one fission neutron at the origin and no absorption. The integral
of K(r) over all space is unity.

[Fanr? K(r) dr =1 (9. 2)
0]

Slowing down kernels can be theoretically derived, but in practice,
synthetic slowing down kernels, obtained by making analytical fits to
experimental data, are usually adopted. A restricted description of the
neutron slowing down process and the use of slowing down kernels
follows immediately.
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9.2 NEUTRON SLOWING DOWN

. The most important questions concerning neutron siowing down are:

1. How far does the neutron travel during the slowing down process ?
This distance is represented by the quantity 7 which is defined to
be one-sixth the average square distance between the fast neutron
origin and the point at which it becomes thermalized. 7 determines
the fast neutron non-leakage probability.

2. How many fast neutrons avoid absorption while slowing down ? As
mentioned before, this quantity is represented by the fraction p.
p is called the resonance escape probability in honor of the first
reactors which used natural uranium fuel.

We will assume that fast neutrons slow down via elastic collisions with
moderator nuclei (and reflector nuclei in the case of reflected reactors).
The magnitude of the fractional neutron energy loss per collision is an
extremely important quantity. It determines how many collisions are re-
quired to thermalize fast neutrons and this number determines both the
type of slowing down kernel one should use and, together with the absorp-
tion cross section, the value of the absorption escape probability p.

. When a neutron scatters elastically with a nucleus having a mass number
A, the largest fraction of its energy that can be transferred to the nucleus
is (1 - @), where

2
A-1
a= ( Al ) (9. 3)
(This is not the o used in (WW). It is the @ used in (GE). ) Notice that
the lighter the nucleus the smaller is & and hence the larger the maximum
fractional energy loss. This fact is illustrated by the following table.

Nucleus A a (1-a) 13
H 1 0 1 1. 000
Be 9 0. 640 0. 360 0. 209
C 12 0.716 0. 284 0. 158
(o) 16 0.778 0.222 0.120
Fe 56 0.932 0.068 0.0353
U 235 0.984 0.016 0.00838

The quantity £ is the average logarithmic energy decrement per collision,
‘ Ey and E, being the
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£= <log, (E,/E,)> (9. 4)

neutron energy before and after collision, respectively.

¢ is useful because for a given moderator nucleus it is a constant in con-
trast to the absolute amcunt of energy lost which decreases with neutron
energy. This being the case, .the average number of collisions required
to slow a neutron from energy E, to energy E2 < E4 is

{Ave. Number Collision} loge(E1/Eq) (
= 9.5)

from E1 to Ez £

Because the average fission neutron energy is 2 meV it is useful to re-
member that

Ave. Number of Coliisions to _ log (2 x 10%/.0254) _ 18.2

Thermalize a 2 meV neutron 2 (9.6)

Many authors use the neutron lethargy, u = log, { 107 /E), rather than the
energy in slowing down calcuiations. (Given u, the associated energy is
E = 107 e~V eV). The reason for this formulation will soon be evident.

Probiem: Verify that du = -dE/E and ug - uy = log, (Eq/Eg).

If the cross sections were energy independent, the probability p for
slowing down without absorption would be

18.2/¢ 18.2/¢
o~ [Z _ z
= (3 6 01

because ES/ T is the probability to scatter rather than suffer absorption
in any given single collision and an average of 18.2/£ "successful" scat-
tering collisions are required for thermalization. Cross sections are
energy dependent, however, sc the simple constant cross section scheme
is not valid as it stands. It can be used, though, to approximate p by
dividing the energy range from 0.0254 eV to 2 x 10” eV into a succession
of non-overlapping energy intervals AE;, with lower bound E;, in each of
which the cross sections are almost constant. The probability to get
through the i-th interval is then
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(9. 8)

R
TN
i’
e
=

E; i E;

: + AR : .
Note: log,, (El———-}-g_l> = log, (1 + AEE1> ~ 8F if AE; << E;
1

The probability to run the whole gamut of energy intervals is p, by
definition, and is given by

i i i

Because the logarithim of a product is the sum of the logarithim of the
factors is valued, one has,

AE; z
logp= 2 ——=i] (:—§ _
gp ! IE; og > i (9.10)
which can be approximated by the integral
2x106 u
t d
logp= f [log (%)]%g = J log (—ZZ-:-S) % (du=-—E> (9.11)
0. 0254
If £, is very small compared with X,
6
e -IZXIO >, dE —exp |- Ut 3, du
0. 0254 z EE o Z ¢ (9.12)
z z Za .
Note: loge <§S> =log 1 ——5‘4 = -f"‘, if 25<<Z

The lethargy variable language was used in the expression for p in
addition to the energy variable language because it is frequently written
this way in texts and the open literature. In lethargy language, £ is
called the average lethargy increas:qper collision.



9.3 SLOWING DOWN KERNELS

According to the Second Fundamental Theorem

sin Bgr

dr (9.13)
Bgr

o0
Pf = f 4771'2 K(r)
0
By using only the normalization condition
foo K(r) 4rrldr = 1 (9.14)
o]
and no other property of K(r), a great deal can be learned about P;. This

is done by expanding (sin Bgr)/ Bgr in an:infinite series and integrating
term by term.

a. If the reactor is infinite, i.e., Bg = 0, then

Pp= [T K(r) 4rrldr = 1 (9.15)
0
as lim SIn X _ 1
X
x™0 :

b. Now suppose the reactor is finite but large enough that Bg << 1 so
that the integral of the infinite series

TEEF o1 - g2 s et - e BOOL 9.16)
g

can be broken off at the squared term. When this can be done,

o~ [ 1.2 ol 4.1 _
Pf=0f 4rr2 K(r)[l-é-Bgr }dr—n1—§B2<r2>—-1—TB2 (9.17)

(Recall that 7 = 1 <r2> is the slowing down area.) In this case the
criticality is

_k(1-7B%) . k ~_ K (9.18)
T (1+12B2) (1 +12B%)(1+7B2) 1+B2M2 '

C
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where M2 = 12 + 7 and is called the migration area. M2 is one-sixth

the mean square distance a neutron travels during slowing down, as
‘ a fast neutron, and during diffusion after thermalization. Hence, in

large reactors, the critical buckling is closely approximated as

B2 =" (9.19)

Fermi Age (Gaussian) Kernel: The age of a neutron of energy E is defined

as
E, D dE
T(E):f OZ—ﬁ_E (9.20)
E s
In lethargy language
u D du
7(u) = - —
() {1[0 Zg & (9.21)

Physically, 7 is one-sixth the mean square distance a neutron travels in
an infinite medium while slowing down from the source energy E, to

. energy E. Age theory is based on the assumption of continuous slowing
down, which amounts to assuming £ < < 1. It gives
R il (9.22)
r) = ——- .
(4717)3/ 2
P;= e B2 T 9.23
f=e g (9.23)

and the criticality equation

-R2
=ke Bg‘r

C
1+ LZBE)

(9. 24)

k
= (1+L2B2)(1+B2 1
( P(1+Bg )

(large reactor)

This result is in accord with the general result derived above. Age theory
‘ is a good approximation for graphite moderated reactors, in fact it was
invented for the analysis of large graphite reactors. If fast neutrons are
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moderated by Be, age theory is less successful as {g, = 0.209 while
(e = 0.158. Age theory is no good at all for water moderated reactors
because £ = 1.0 and slowing down can be accomplished in just a single
collision between a neutron and a hydrogen nucleus.

Diffusion Kernel

A good approximation method for neutron slowing down by light nuclei
can be obtained by the convolution of several diffusion kernels. A dif-
fusion kernel has the form

e-r/L

K(r) = 47 L2 r

(9. 25)

where L is the diffusion length. It represents the number of neutrons per
unit volume at a distance r from a unit point source as given by diffusion
theory. In this treatment the fast neutron energy range is divided into
several subintervals called energy groups. All neutrons in a given group
are taken to be monoenergetic, their energy being the average energy
for the group. A different diffusion kernel is then assigned to each group.
For sake of definiteness suppose three fast neutron groups with kernels
Kj (r), K2(r) and K3(r) are selected along with the thermal group or
level. This is a four group model. Let subscript 1 indicate the highest
energy group, 2 the intermediate fast neutron group and 3 the lowest
fast neutron group. L%a L%S and L% will beithe diffusion areas for the
fast groups and 1.2 that for the thermal group. Lg is one-sixth the

mean square

} Group 1
E‘S } Group 2
]
& } Group 3
} Thermal Group

distance traveled by neutrons in the i~th group before they slow down into
the next lower group.

The probability to slow down through all three fast groups into the
thermal group is

Pf = Plf X sz X P3f . (9., 26)
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where

o, SiNB o
Py = [ 4nr2K(r) S5 ar (9.27)
0 g

In the case of diffusion kernels these integrals are

1
Pit =4 +L2B2) (9. 28)
Hence
1 1 1
and
__ P
P"Ptpf”(1.+L2132) (9. 30)

This approach (convolution of slowing down kernels) is similar to the
probability model used in Section 9.2 to compute p. The diffusion kernel
criticality equation is

K
(1+ L%Bz)(l +12B2)(1+ 12B2)(1+12BY)

C= (9.31)

An example of the accuracy of the four group method for a U235 water-
moderated, base cylindrical reactor is given by Figures 9.1 and 9.2. In
this example synthetic diffusion kernels were used where L1 = 4. 49 cm,
Lg=2.05cmand L3 =1.0 cm. L= 2.88 cm was used for the thermal
group. Figure 9.1 compares critical height calculations for (1) Age
Theory (b) Two-Group and (c) Four-Group with experiment. Age Theory
is clearly not suited for water moderated reactors. The four-group cal-
culation is quite accurate. In constructing synthetic diffusion kernels,
the analytical fits are made so that the resulting kernels give the
experimental slowing down area and the same number of thermal neutrons
as experiment. The thermal neutron slowing down density given by each
method is given in Figure 9. 2.
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Fig. 9.1 - Comparison of critical height

calculations for a bare, finite
cylindrical reactor. The
moderator is water. H refers
to hydrogen and U to the urani-
um fuel
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Fig. 9.2 - Experimental and calculated
slowing down density, q(r), in
water. q(r) is the number of
thermal neutrons created per
unit volume per second at a
distance r from a unit source
in this instance.
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9.4 SOLUTION OF A TYPICAL PROBLEM

Problem: A homogeneous mixture of 1 part by atoms of U239 to 15000
parts of graphite is to be used to construct a bare spherical
reactor.

Calculate (a) critical size
(b) critical mass

Assume the following v=2.5
constants: Oy (U235) 681 barns ( a)
o (U 235 = 580 barns (cr‘fl
éGrapmte) = 350 cm?
(Graphite) = 2580 cm?
p (Graphite) = 1. 6 gm/cm3 (p©)
04 (Graphite) = 0. 003 barns (org)

Solution: ~ AY =235 g/mol Agv =12 g/mol

The calculation of k is simplified since in the absence of U238, we
assume € =p = 1. Therefore

u u
Of Ea
k=77f=v"l;' -
u
0y Za-i-Za
580 1
"8 . N oS
LYo

a

where N€ is the number of atoms of carbon per cm3 of the mixture and
NY is the corresponding number for uranium atoms. Thus

580 1
k=2.5 =2.00
681 0. 003
1+ 15000 681

The Fermi Age is a function of Zg, D and §. It is simple to show that
for low concentrations of heavy nuclei in light moderators, 7 is not sig-
nificantly different from that of the pure moderator. Hence 7 for the
reactor is equal to 7 (graphite) = 350 cm?.

The same cannot be said however for L2 =D/ T, Although D, the diffu-
sion coefficient is not affected, the large absorption coefficient of uranium
compared with graphite makes it important even in small concentrations.
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since L2 (Graphite) = ¢

112 -
and L* (reactor) 2§ N Zg

it follows that
1.2 (graphite)

L2 (reactor) =

i
1+ —z—%»
Za
_ 2580 _ 9
= 681 =160.0 cm*“ .
1+

0. 003 x15000

Now, applying equation (9. 24)

-350B§
2.00x e 1
1 +160.0 B3
and therefore, BZ =0.0014 = (%)2

and R=83.7T cm.

The slight dilution of uranium will not affect the atomic density of
carbon. Therefore

NC = Avogadro's number x p(graphite) _ 6. 025 x 1023 pc
= - = -
Atomic weight Aw

Therefore, since

_ N® _ 6.025%1023 mu
"~ 15000 Al
W

Nu

where m" = mass of uranium per cm®

, it follows
u__pCAY  1,6x235

= —_ - _3 3
15000AC ~ 15000x12 ~ 2 09 X 107 grams/cm

m

The critical mass of uranium Mg in the sphere is then

MY =m V=2 09x10"3 x%ﬂ (83.8)3 = 5.15 Kg
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10. NON-UNIFORM REACTORS

By a homogeneous reactor is meant a reactor where small-scale com-
position is uniform and isotropic. All cross sections are independent of
position in a homogeneous reactor. In non-uniform reactors the cross
sections are position dependent and reactor caiculations are more complex
than those for uniform reactors, both in the conceptual sense and with
regard to the mechanics of computation. All real reactors are to some
degree non-uniform. The non-uniformity usually consists of:

1. The presence of a reflector which serves {c deflect neutrons back
into the fueled core and hence cut down fast neutron leakage.

2. The presence of control rods which serve to regulate the power
level of the reactor,

3. Non-uniform fuel loadings which serve to increase the efficiency
of the reactor by flattering the power distribution,

The materiai composition in a non-uniform reactor usually changes
abruptly (discontinuously in mathematical language). Hence, at the inter-
face between two different materials the neutron flux has to adjust itself
to a compromise status between the two difterent characters it would
exhibit in an infinite system composed purely of either of the two adjacent
materials., The fundamental assumption used in the diffusion theory of
non-uniform reactor are:

1. The diffusion baiance equation can be set up in each different ma-
terial region and gives the neutron fiux for each r ioré;ubw‘./?l_
. 2. At the boundary between two regions the flux and % ot re
continuous.
3. The flux is zero at the exirapolated boundary of ail external regions.

If there are a large number of different material regions the matchin
Eégwwq}; & &

of the flux and . at each boundary becomes a very tedious
undertaking.

10. 1 REFLECTOR SAVINGS {WW, 495-500)

Figure 10.1 shows the effect of a reflector on the thermal neutron flux.
The cross hatched area represents the gain in fiux integral instituted by
the reflector and it is at once clear that, given a core composition, the
dimensions of a critical reilected core are smalier than those of a critical
bore core, The difference, &, is cailed the refiector savings.
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Reflector Reactor Reflector
Slow-neutron . Slow-neutron
flux with / Y | flux without
reflector / \\ reflector

/ \
4 \
Il \\
[N N A S 5.
-48 -36 -24 -12 0 12 24 36 48

DISTANCE FROM CENTER, cm

Fig. 10.1 - Slow-neutron flux in spherical U235,
water-moderated reactor with and
without a beryllium oxide reflector.
The maximum-to-average flux ratio
in the core with reflector is 1. 4;
without reflector it is 3. 2. The re-
flector, with extrapolation distance,
is 30 cm thick.
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Reflected reactor calculations usually begin with an estimate based on '
the all-thermal model which is then refined in a two-group calculation.
If the reflector is thin (T<<L,),

D
6 = 1—59— T (T = reflector thickness) (10.1)
r
and if the reflector is thick (T =L_), -
D,
6 = D L. (L, = diffusion length in reflector) (10. 2)
r

If R is the core dimension, then the material buckling for critical opera-
tion is

B2 - ———2”2 (10. 3)
m 4 (R+d) ’

and the criticality is
k
72 1.2
4(R+06)2

where L is the diffusion length for the core.

C-= (10. 4)

1+

The change in criticality, AC, obtained placing a reflector characterized by
6 on a reactor of dimension R is

AC = K Kk _k-1 [@
- 14 72 1.2 1+ 212~ k R (10. 5)
4(R+5)2 4R2

ifd<<R

10. 2 ONE-GROUP CALCULATION FOR REFLECTED SLAB REACTOR
(GE, 229-236)

This example will show how a one-group reflector calculation is done. The
sub script 'c' refers to the core region and the subscript 'r' to the re-
flector region. Figure 10. 2 describes the geometry for a slab calculation.
h is the physical width of the core, T is sum of the physical width of a
reflector slab t and the extrapolation distance d,.. The fluxes &, and
®.. are obtained by solving the coupled differential equation.
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Fig. 10.2 - Reflected slab reactor
geometry
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V23, +—5 &.=0 (10. 6)
c 2 C
LC
V23, - % =0 (10.7)
Lr

using the boundary conditions

<I>r<g+T>=O | (10.8)

®. (h/2) = &, (h/2) (10.9)

De —43 (h/2) =, dq’r N~ (h/2) (10.10)
This gives

®c(x) =A cos Bg x (10.11)

) &, (x) = C sinh «,. (g+T—;9 (10.12)

As before A is determined by the power level of the reactor. The criti-
cality condition is obtained by substituting &, (x) and &, (x) from Equation
10.11 and Equation 10.12 into Equations 10.9 and 10.10. This gives two
homogeneous equation for the constants A and C. The result is:

D¢ B tan E-cz—h- = Dy kp coth kT (10.13)

A typical slab reactor reflector savings curve is given by Figure 10. 3.
The equation for 6 is obtained in the following way. By definition

5 = % (hy - ) (10.14)

where h, = 71/B is the critical thickness for an unreflected core having
materlal buckhng Bm This gives h in terms of § as in Equation 10. 15

h 7
'z—zﬁm-é (10015)
C
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Fig. 10.3 - Reflector savings (Curve B) for
a slab reactor. h is slab thick-
ness for a critical reactor (Curve
A) and T is the reflector thickness.
Note that a 50 cm reflector allows
a 40 percent reduction in H, and
hence in fuel cost.
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Upon substituting Equation 10.15 into Equation 10.13 one obtains

1 71 _.1/DcB '
5= B, [ta,n (———QDr PN tanh KrT)] (10. 16)

Problem: Assume a graphite reflector for the U235-gra,phite reactor of
Section 9.4 (a) 10 cm thick (b) 50 cm thick. Since D, = D¢ Equations
10.1 and 10.2 for slab systems also apply to spherical geometry. Com-
pute 8, critical volume and critical fuel mass

a. Because T = 10 < L, = 50 Equation 10.1 gives 6 = 10 cm and there-
fore a new critical core radius of R‘EEf == 83.8 -~ 10 =73.8 cm. The
critical core volume is

yref . .;1 7 (73.8)3 - 1,68 x 106 cm3

L]

The critical volume of the critical bare core was

yunref . 2. g3 813 . 246 x 106 cm3

3
Hence
ME .. 1.68 )2{ 540615 kg g 52 kg (10 cm reflector)

b. Because T - 50 cm = L, use Equation 10.2 to obtain 6 = 50 cm,
REf - 33,8 cm, VEf=1.62 x 105 cm3 and MY = 0.34 kg.

10.3 TWO-GROUP CALCULATION FOR A REFLECTED SLAB REFLECTOR

The number of fast neutrons produced per unit volume per sec is k Zg
9. where Zg. is the macroscoepic absorption cross section for thermal
neutron in the ccre. This is the fast neutron source term. The balance
equation for fast neutrons is therefore

Dic Vztblc - Z1cP1c “ kTge ¢9c = 0 Fast Neutrons (Core)(10.17)
The thermal neutron source is the product of the fast neutron slowing

down cross section . and the fast flux ¢, so the balance equation for
thermal neutrons is:
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Dy, v2 $oc - Zge $9¢ + T1¢ ¢ = 0 Thermal Neutron (Core) (10.18)
In the reflector

Dyr v2 $1p - Z1p Or= 0 (no fast neutron source) (10.19)

Doy V2 &g - Sop &9, + i, &9, = 0 « (10.20)

We now have four balance equations to solve simultaneously.

Note that all of the balance equations are inhomogeneous excepting the
fast flux equation for the reflector. (A differential equation is in homoge-
neous if it contains functions other than the unknown function one wants to
solve for. For example, the inhomogeneous term in the core fast neutron
equation is kZ9, $9,.) The solution to an inhomogeneous differential
equation is equal to the sum of the solution to its homogeneous part and
a particular solution speeifically geared to the nature of the inhomogeneous
part, i.e.,

® = ®homo * Pparticular

The homogeneous parts of the four balance equations are:

V2 &y, + B2 ®;, =0, gives V2 &;, = -B2 &),
] core (10. 21)

v2 &y, + B2 @5, = 0, gives V2 &y, = -B2 &y,

V2 &5 - kyp2 Byp =0

:l reflector (10. 22)
V2 &g, - kppl B9, =0

The homogeneous equations results for the core allow one to write
- (D1cB2 + 21¢) &3¢ + Kk D 8¢ =0

9 (10. 23)
Z1c ®1c - (Do Bg +Zge) @9, =0
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which have a non-trivial solution if and only if the determinant (Cramer's
Rule) '

- (D1 B? + Z1¢) kZ9,
=0 (10. 24)
Z1e - (D2¢ B2 + Zac)
The criticality conditions is, therefore,
(D1 B2 +Z1c)(Dge B + Zgc) = kZpc Tac
i (10. 25)

k=(1+12, BY(I + Lo BY)

This is a second order equation for (B?n) core. The problem is to find
the geometrical dimensions which give a geometrical buckling equal to
the material buckling. This involves the interplay between the core and
the reflector and constitutes the messy part of the calculation.

The two solutions for B2 are:

2] <_1_+_1_>+/_1_+_1_ 2+_4_(k_-_1)_
=50 172 2 2 2 2 12
2 Llc L2c Llc LZc Llc I"2c '
(10. 26)
9_1 1 _1 /1 1 4(k-1)
Tl (2 T2 ). fle2 T2 ) T2 12
ic 2c 1c 2¢c 1c 2c

The general solution to the core equations are linear corhbinations of
the two solutions determined by uz and - vz. Let X by the solution be-
longing to ©2 and Y that belonging to - V2,

A2 X+ u2X=O
(10. 27)
A2y -12y=0

and
$1.=AX+CY

(10. 28)
B9, =A'X+C Y

66




TABLE 10.1
SOLUTIONS OF WAVE EQUATIONS FOR NEUTRON FLUX IN REFLECTOR

[r—

Geometry . Z Z (T infinite)
Infinite slab sinh k (1/2H + T - X) e ¥
: _ -KpI'
Sphere sinh kx(R+ T - r) e
r r
Infinite cylinder Ly(k,r) - %E{r (R+ TﬂKo (kpr) K, (KypT)
, . Geometry X r o
¢ Infinite slab cos Mx cosh ¥ x
o
O
8 x sin M r sinh 4/r
Sphere " T
Infinite Cylinder Jo ( M T) I, v r)

!
i

i

i
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Fig. 10.4 - Typical two-group neutron flux distribution
in a reflected slab reactor. The core is an
aluminum-water U239 mixture for which
UZ¢/Zat = Zg&/Zat = 4. 4; the reflector is
beryllium, for which UZ¢/Zat = Zgz/Zat
=97, and U =17.5 is the lethargy range

of the fast group.




Table 10.1 lists the functions X and Y for slab, spherical and cylindrical
geometry. It turns out that A and A', and C and C' are proportional to
one another so that

@10=AX+CY

(10. 29)
@9, = Sy AX + 89 CY
where . f
S © 1._Dic Lgc
171y2 212
Lchzc -1+u ch
(10. 30)
i 2
Dic Loe
= 2

Except for A and C, 1. and ®1c and &9, are now specified in terms of
known numbers.

Similarly the solutions to the reflector equations turn out to be:

®1r = FZy
(10. 31)

Dor | K2 - ¥

1
where Z1 and Z, are given by Table 10.1 and Sg = Z1r [ 2 :I
2r 1r

(4

One determines the consta ts A C Fand G by matchmg the core and

reflector fluxes andsthae : :
reflector interface. The matchmg equatlon are the following:

AX+CY - FZ1 =0
AS1X+CSgY - FS3Z1 - GZ2=0 (10.32)
AD1cX" + CDycY' - FD1pZ1 =0

AS1DgcX" + CSgDgcY' - FDarS3Z1 - GDapZp = 0
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A non-trivial soltition for A, C, F and G exists if and only if the de-
terminant of the coefficients for their unknown vanishes, i.e., if and

only if

_ X Z1 Y Z4 Zs
A= [ch % ~ Dir Z—J I:SZ D2c5 - 83 D2r‘—Z—1 - (Sg - S3) Dar 23]

\ \

" 71 & Z Zo |
- [ch v~ Pir 'Z—J {51 D2cx - 53 DZrE} - (S1 - S3) Do ggLJ =0

One goes about solving this by trial and error. For example, suppose
that for a given fuel, moderator, and reflector it is required to find the
critical core dimension R for a given reflector thickness T.

1. First use R given by a one-group approximation and evaluate A.
A will in general not be zero but from the value of A obtained one
can make a good guess about how to change R so A will approach

Z€ero.
2. Try successive R - guesses. Plot A versus R and use the R-value

which gives A = 0 on the graph.
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11. LATTICE THEORY (WW, 610-695)

vary in opposite directions when the fuel fraction, F, increases, e.g.,
f increases and p decreases. Because of this, there exists a particular
fuel fraction, given a fuel and moderator material, for which the pro-
duct pf attains a maximum value and, as a consequence, for which the
infinite medium multiplication factor

The resonance escape probability, p, and the thermal utilization, f,

k = nepf (11.1)

also attains a maximum value (approximately). This circumstance suggested
that it might be advantagous to collect the reactor fuel into either sheets,
rods, spheres, etc. and arrange "fuel elements' periodically within a
moderator matrix. Such an arrangement of fuel elements embedded in
moderator material is called a reactor lattice. The behavior of a lattice

is much different than that of a homogeneous mixture of fuel and moderator.
As is well-known, a natural uranium fuel-graphite moderator reactor is
workable only when the fuel is segregated in a lattice structure. (See

Section 13.) It is impossible to construct a critical homogeneous reactor
using graphite moderator and natural uranium fuel.

Localizing the fuel concentration produces the following changes, rela-
tive to the characteristics of a homogenized system, in thermal reactors.

1. f is decreased (minor disadvantage)
2. p is markedly inceeased (major advantage)
3. € is increased (minor advantage)

The double advantage arising from the increase in p and ¢ offsets the
relatively small decrease in f by a considerable margin. An outline of the
diffusion theory approximation for a reactor lattice will now be given
as it pertains to the computation of f and p.

11.1 THERMAL UTILIZATION (THERMAL NEUTRONS)

Let X, and =, be the absorption cross sections, and V, and vy the
volumes for fuel and moderator material, respectively. In a homogeneous
system

fhom = Zao VO/(ZaO UO + zal V].) (11. 2)
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Because the reciprocal form, 1/f, is most convenient in lattice theory,
let us write also

1 -1+ Zal V1 (11.3)
Thom a0 Vo
In a lattice the flux in a fuel element, &, is generally different from
the flux, &4, in the enveloping moderator matrix and the fuel element

volume Vo is different from the moderator volume Vi associated with
it in the basic lattice cell.” The thermal utilization for a lattice is

Zao <®o> Vo (11. 4)

t= [Zap <®o>Vg + Za3 <®1> V1]

provided the cross sections an and Eal are independent of position in
the fuel and moderator volumes, respectively. The reciprocal form of

Eq. (11.4) is

1 Za1 Vi (<<I>1> Za1 V1
2= = e 11.5
i 1+ Vo \ <> 1+ ” Vod ( )

The name '‘disadvantage factor' has been ascribed to the ratio

d= <d;>/<d,>=1 (11.6)

Assume a cell with fuel contained in the region 0<r<r, and moderator in
the region ro<x<ry , r=ry, being the exterior boundary of the cell. Fig-
ure 11.1 describes the general behavior of the thermal flux in a lattice
cell. Because <@ > / <® o is greater than unity one sees that

1 >0

1
f fhom

so that f < fhom whenever the flux behaves as it does in Figure 11.1. We
will now show that this is, indeed, always the case.

According to diffusion theory the neutron balance equations for the cell
are

* The basic lattice cell is a module of fuel and moderator of such geometry
that a repeated "pattern" of this module gives the reactor lattice.
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Dy Ado- T, 8, =0 O<r<r, (fuel) (11.7) ®

'D1A<I>1 -Z,1 ®,+q=0 Io<r<ry (moderator) (11.8)

where q is the thermal neutron source term (neutrons per cm3 per sec).
There are three boundary conditions for these equations. Two of them are
the usual conditions on the continuity of the flux and current at a material
interface - which is r=rg in this instance.

By (ry) = &4(r,) Bnd Condition (1) (11.9)
D,V, ®,(ry) = D1V, ®1(ry) Bnd Condition (2) (11.10)

The symbol V, means "directional derivative along the normal to the sur-
face in queation. " The third boundary condition

Vn @1 (rl) =0 Bnd Condition (3) (11.11)

stipulates that the net thermal neutron flow between adjoining cells is zero. ‘
Our balance equations under these conditions have the solutions

&, (r) = aR (k,T) (11.12)
$; (r) = q/Z4; - BC(r) (11.13)
where o = - Dy C'(r,)/Dg ko R' (KoT (11. 14a)
q/Eal = [C(rgy) =Dy C' (ry) R(koTo)/DokoR! (Koro)] (11, 14b)

and 8 can be taken as unity. The functions R, R*, C and C?' are defined
in Table 11. 1 for three cell geometries.

One uses the solutions for & o and @; to obtain f in the following way:

1. Observe that the production rate of thermal neutrons is q V if one
assumes the thermal neutron production in the fuel is negligible.
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2. Observe that in an infinite system (the lattice not the cell) the number
of neutrons absorbed is equal to the number produced. Since all cells
are identical then qu is identical for all cells and hence the number
of neutrons absorbed in each cell must be q V; since Eq. (11.11)
states there is no net neutron flow from one cell to another.

3. Observe that the number of neutrons absorbed in the fuel element
must be equal to the total neutron flow into the fuel element. This
total flow is

Net flow into fuel element = D; V&, (rg) * S
. where S is the fuel element surface area and DV &; (rg) is the net
current into the fuel element at its surface r=r,

This physieal reasoning gives.

fo Number of Neutrons Absorbed in Fuel element (11.15)
"7 Number of Neutrons Absorbed in Cell :

_ 8Dy p%(ry) _-8SDyC' (ry)

qVy qvy
qV
1. 1 (11. 16)
f  -SD;C'(ry)
(C* (r) is always negative so 1/f is positive)
Substitution Eq. (11. 14b) into Eq. (11. 16) leads to
‘1_‘ = C(rQ)Zal V] + R(Koro) Zal Vl (11. 17)
f -S Dl C' (ro) R' (Koro) S Do KO
By convention Eq. (11.17) is written also as
1 .
;= 1+X+R, (11.18)
Cro)Z, 4V : :
where 1+X = (xo) lal 1 (excess absorption) (11.19)
-SD, ¢t (r3)
_ R(kory) Za1 vy i ti 11. 20
R, = R' (k,r.)) S Dok (relative gbsorp ion) (11. 20)
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In this representation the words ""excess' and "relative' refer to what
would be the case if the average moderator flux <¢;> had the value &(r,),
i.e., the interface value. .

_ Moderator Absorption (If <®1>were &(rg))

Ra Fuel absorption (11.21)
1iX = 1 + Moderator Absorption - =44 V1 <I>(ro) (11. 22)
Fuel Absorption
It is now possible to show that f < f;,,,, because
fl_fl =1+X+R-(1+—-___231V1 (11. 23)
hom Zao Vo

=X+ za.]ll. ‘i’(ro) - 1 >0
ZaoVo | <%0~

This difference is positive because <&,> is less than &(rg).
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TABLE 11.1

THE FUNCTIONS R, R', C AND C' ARE LISTED BELOW
FOR THREE CELL GEOMETRIES

Geometry R(kjr) R'(kir) I(k4r) I'(kir)
Plane coshkjr sinh k5r sinh kjr cosh kjr
Cylinder* I; (kir) I7 (k1) - Ko (k41) Ki (kir)
- sinh k;r | k3r cosh kjr - sinh k;r | - cosh kyr | -kir sinhkjr +coshkjr
Sphere 7 - : 5

Kir (kir) Kir (ki)

C(r) =T (k1ry) R(kqr) - R'(k1r1) I(k1r)
C'(r) = k1 [I' (k1r1) R"(ky1) - R"(K1rq) I' (K1T)]

*The Bessel functions I and K used here are those defined in Watson's Bessel
Functions and are always positive.
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11.2 RESONANCE ESCAPE PROBABILITY

Define a "resonance' neutron utilization factor fR in exactly the same
way the thermal (neutron) utilization factor is defined.

g = Number of resonance neutrons absorbed in the fuel (11.24)

Total number of resonance neutrons absorbed

Proeeeding formally in exactly the same way as in Section (11.1) one finds

-flg = 1+X(g) * Ra(p) (11. 25)

p can be shown to have the form

p = o TR/(1-R) (11. 26)

Now because fi will be smaller than fR (hom), for the same reasons
f < fhom, it follows that

This follows because given x and € > 0

X - (x+€)
1-x; e[1—(x4‘€)]

(11.28)
e

where the association fgR = x and fR (hom) = x+e > fg has been made to
simplify motation. Inequality (11.28) is true because the exponent on the
left

X

1-x
is smaller than the exponent on the right

X+e
1-(x+¢€)

by the amount €.
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It hasnow been shown that. diffusion theory, predicts that lumping the
fuel into a fuel element (1) decreases f and (2) increases prrelative to
their values were the fuel homogeneously distributed throughout the mod-
erator.

11.3 DISADVANTAGE FACTOR

From Equations (11.5) and (11.17) the disadvantage factor is

_ anVO l -1 = @(ro) " ZaoVO X
Za1Vq I <®pb Z,1Vi

(11.29)

The disadvantage factor measures the loss in thermal utilization, suffered
by lumping the fuel, as a consequence of the thermal flux depression which
occurs in the fuel element relative to the surface flux ¢ (ro). d > 1 because
thermal neutrons are produced, by slowing down of fast neutrons, in the
moderator. These thermal neutrons then diffuse toward the fuel elements
which are strong sinks (absorbers) for thermal neutrons and therefore
cause a flux depression within themselves; a general characteristic of

any strong sink which is fed by an external source.

If the moderator diffusion coefficient were infinite the second term in
Equation (11. 29) would vanish and d would arise purely from the fuel ele-
ment self-shielding term & (ry)/<®,>. In the Oak Ridge X-10 reactor the
self shielding part of d is 1.1 and the total disadvantage factor is 1.8. Be-
cause the minimum value for d is unity, one sees that, in this reactor,
non-uniformity of the flux in the moderator is about 7 times more impor-
tant a contributor to d than is flux non uniformity in the fuel.

For a given ratio Vy/ V; and equal fuel element volume to surface ratios,
f is largest for slab fuel elements and least for spherical fuel elements.
The important difference between these geometries being that in the slab
geometry there is no shrinking in the areal cross section as the diffusing
neutrons approach the fuel element. This shrinking of areal cross see-
tion for fuel elements with curved surfaces is called ""bottle necking."
Bottle necking always decreases f. One way to partially cure bottle neck-
ing is to place an "air" gap between the fuel element surface and the
surrounding moderator.

79




12. EFFECTIVE RESONANCE INTEGRAL - ELEMENTARY
THEORY (GE, 252-25T)

Before a detailed knowledge of the energy behavior of neutron cross
sections existed and before the advent of high-speed computers, the
resonance escape probability was determined experimentally. It was then
expressed in terms of a quantity called the effective resonance integral.
In approximate form

- fu ?Ea du
p(ug —u) =e Yo - (12.1)
If one assumes that¥ 5 = Z54 for the fuel, then it follows that
Za. Jo (a0’ (12.1)
T s\ = |/

where N is the number of fuel nuclei per cm3, The effective microscopic
absorption cross section (0g0)esf is defined as

_ OapoZs Tao0
o) ..=%30%s _ _ a (12. 3)
( ao’eff b 1+ NOZ Oao
s

The quotient Zg/Nq is thought of as the scattering cross section per fuel
nucleus, i.e., per absorber nucleus, and the effective resonance integral,
Ieff, is defined as

u
Tt = | (0g0)eft QU (12. 4)
Uo
In terms of Igff,
_Nolefi
| £Zg ‘
p=e : (12. 5)

It must be assumed that Zg is constant in lethargy in this representation
of p.

In pure fuel Ng = N (total number of nuclei per cm3 and one has
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Cao
(Caoleft = %20 < 00 No—N
+

Os
If the fuel constant is very dilute, i.e., Ny — 0, one has

(Caoleff =0ap No— 0

Hence Ipff takes its minimum value in pure fuel and its maximum value
in a dilute fuel system.

The pre-factor (No/éZ) in the exponent of Equation (12.5) behaves in
an opposite manner. Its maximum value occurs for Ng = N, its minimum
value for No = 0. The value of p, therefore, depends on two oppositely
varying factors. The "advantage'" in the tendency for p to decrease with
increasing Np, associated with the decrease in (90)eff, is measured by
the so-called volume adWantage factor, VAF,

!
1

VAF = ,__03-0 =1+ o _.qa:Q.__ — ‘ (12. 6)

o

where Nj is the number of moderator nuclei per cm3, Physically, VAF
is the reciprocal of the scattering probability. (Prove this statement. )

From elementary slowing down theory (GE, 255; 147-160) the neutron
flux as a function of energy behaves as

1 1

E (o, + constant) (12.7)

¢ (E) <

Hence if there is a large amount of fuel the resonance flux is depressed.
(Resonance flux is the neutron flux for the neutron energy range in which
the exceptionally large resonance absorption cross section peaks occur

for U238 o U235), This explains why the effective resonance integral
decreases as Ng increases. Figure 12.1 illustrates this behavior. Because
of the depression in resonance flux, the product Z;&E) is smaller in the
resonance region than it would be if & E) were not depressed and the number
of resonance absorptions is decreased. The U238 cross section in the
resonance region is plotted in Figure 12, 2.
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Fig. 12.1 - Resonance flux depression
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13. EF’FECTIVE RESONANCE INTEGRAL - REACTOR LATTICE
Ioff, inbarns, is defined such that
Vo No Tef (13.1)
is the total number of absorptions in a fuel element of volume Vg with Ng
fuel nuclei per unit volume for a unit flux per unit lethargy. Io¢f is de-

termined experimentally and expressed in terms of two types of empizrical
equations

, S \\1/2
Tett =IM* Is {34, (13. 2a)
_<&o> s’
left =5 (rg) M* s |37 (13. 2b)

the latter being the older form. Usually it is measured with respect to
the flux at the fuel element surface &(rpy) and in this case flux depression
in the fuel element is automatically accounted for in the experimental
measurement.

In other instances it is measured such that the mass term Iy, must be
weighted by < <I>o>/ &(rp) to account for flux depression in the fuel.

13.1 Io¢¢ DEFINED FROM EQUATION (13. 2a)

By definition the fuel region absorption is

&(ry) 91
VQNOIeffA—UoI;-—Dlsa—r (13.3)
r=rg
In this case
1__4qVy _Zal1Vi1C(rp) +Za]_ V1 AUR (13. 4)
fR D‘is 2<_I> | -SD1 C (ro) Vo No Ieff )
a ]
rr=r@
as
q = [BC(ry) + @ R(kgro)] Zal
(13.5)

=[B&1{ro) + &5(ro)] a1
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1_.49aVy _BZa1ViClro) , Za1Vido(ro) AUR
fr D Sa<§1 -SBD1C' (rp) Vo No Ieff 90 (r0)
1° Tor
r=ro
(13.6)
If one uses Zg51 = 22| it follows that
a AUR
. . £§21V1C(ry) £§Z1Vy .
Basic Equation | —= + : 13.7
q fR -SDjAURC'(rg) NoVolesf 5 ( )
13.2 Ioff DEFINED FROM EQUATION (13. 2b)
If Io¢f is taken as
<$y> S
= + —_—
Tett IM<I>0 (ro) Ig M (13.8)
then from Equation (13.7)
d_ §Z1V3iC(ry) £21Vy
= = n + (13.9)
fr SD;1 AUR C'(ry) No Vo I <P, +1g (i)
@O (ro) M
But
<¢0>‘,O— -1 Y (I
——_"?6\(?0) =Ko~ @SR'(kyr) (13.10)
So
<®y> NoI -1
N, VoI 0T = __0M ,~lySR' (kor
0 0 ME5lrg)  aR(kprg 0 5K (Horo (13.11)

— NQIMSR' (\Koro)
ko R(koTp)
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1 _ £31V1C(ro) £21V1

fr -SDj{AURC'(ry) "IMSR' (kg To)

)
+1g (o

Vo No

This is a good representation for fg
In this equation:
D, = 1/3%

N,1I
_ No leff
80 = AR

/
. = [Noleif
0 AUR DO

(AUR is the width of the resonance region in lethargy units)

13.3 EMPIRICAL EXPRESSION FOR I.¢¢

B g\1/2” i
Iggf= 2.8 + 25 (-ﬁ> x 1024 cm?2
: - “Uranium metal
Ioff = | 8.0 # 27.5 <'1\S/“1> [x 10-24 cm?2 )
B S 1/2j _ 9 \‘-\
Tegg = | 4-15 + 26.6 (M) %10 24cm
| _ _ "UOZ
Ieff = [11.0 + 24.5 (%)J 10-24 cm?
f t
Im Ig

URANIUM METAL, Igff IN BARNS

S/M 0.0312 | 0.0625 | 0.125 [ 0.250
Iesf (EX) 7.21 8.72 11.26 |15.21
Ietf (Theory) | 7.1 8.9 11.6 15.3

Value = 240 with o« dilution
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13.4 —:— AND% COMPARED

Ro1> Rpg > Ro3 Ro1  Roz Ro3

=

Vl/Vo s

1. cer s .
a. 3 increases with increasing R, at constant V1/Vo

i.e., f decreases with increasing R, at constant V1/V0

because of flux depression in fuel

b. %— increases with increasing V1/V, at constant R

because of more absorption in moderator
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S| ——

NN

Vl/VO ———

Ro1 > Ro2 > Rp3

1

a. decreases with increasing R, at constant V1/V
i.e., p increases (flux depression)

b. % decreases with increasing V;/V, at constant R,

i.e., p increases (more activity in moderator)

Optimum values for p and f therefore exist at which the product pf
is maximum. In this respect it is interesting to observe how pf behaves
in a homogeneous natural uranium-graphite system. The values of
Ieff’ p, f and pf are listed in Table 13.1 for this system.
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TABLE 13.1

ABSORPTION PARAMETERS FOR HOMOGENEOUS
NATURAL URANIUM GRAPHITE SYSTEM

Ni /No 1 P p F pF

200 72 barns 0.579 0. 889 0.515
300 817 0.643 0.842 0. 541
400 100 0.682 0. 800 0. 546
500 112 0.693 0.762 0.528

This system cannot be made critical because (pf)max >~ (.55 is -
too small to give

k=nepf=1

Because 7 =1.3 and € = 1.03 for natural uranium fuel, 7¢ =1.34 and
hence pf must exceed 1/1.34 = 0.745 for the system to be critical as
an infinite system. The fact that (pf)yax = 0.55 < 0.745 precludes
criticality.

An ingenious solution to this problem was devised by Wigner and
Szilard which was applied to the construction of the first nuclear reac-
tor. This was to lump the uranium metal in balls, separated by graphite.
Since the uranium atoms do not slow neutrons down significantly, the
neutrons which are produced at energies higher than the resonance
energies in the uranium will diffuse into the graphite region. These,
then stand a good chance of slowing down past the resonance region
before colliding with another uranium atom. Obviously the distance be-
tween lumps is a very crucial parameter of the heterogeneous reactor.
As the lumps become further apart, we saw that f will decrease and p
will increase. There is therefore again an optimum lump size and spacing
for maximum pf.

In a finite reactor the leakage of neutrons must also be accounted for.
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14, REACTOR CONTROL AND FISSION PRODUCT POISONING

Obviously, more fuel than necessary for criticality must be loaded into
a reactor which is to operate at a measurable power level. In order to get
up to a significant power, the reactor must be made supercritical for a
time. Also, as fissions occur, tending to reduce the multiplication factor
there must be some method of rajising the multiplication factor continuously.

The rate of fuel burnup can be estimated from the energy release per
fission. 3.1 x 1010 fissions per second are required to produce 1 watt of
power. The rate of fuel burnup wiil be approximately one gram per megawatt-
day. For low power reactors thic can be almost negligible as far as de-
termining excess reactivity requirements.

14.1 FISSION PRODUCT POISONING

An important factor in the excess reactivity requirement is the fission
product buildup. When the reactor is designed, materials of as low an
absorpticn cross section as is practical are used. However, as fission
begins, the fission fragmenis begin to contaminate the core. As far as
the effect of the fission products on the multiplication factor goes, they
can be divided into two categories - short lived and long iived isotopes.
The long lived isotopes buildup steadily in a manner proportional to the
power-time history of the reactor, In Figure 14. 1 obtained by R. N.
Deutsch and published in a memo at G. E.'s Knolls Atomic Power Labora-
tory, the effect of stabie fission product poisoning is plotted in terms of
equivalent grams of Bl0 per kilogram of fuel as a function of fractional
fuel burnup. To perform a "burnout’ calculation, one would first com-
pute the amount of fuel destroyed in a given time from the known power
level of the reactor and then use Figure 14.1 to derive the fission-pro-
duct poiscning effect in terms of equivalent B10, Then the k of the reactor
can be computed using a B10 cross section of 3810 barns. If the reactor
was initially critical (k=1) a value of k<1 will be derived for the burnt-
out reactor. The eifference in k must be compensated for by control.

A more important form of the poisons is the short-lived, high cross
section poison Xel35, This isotope has the highest known absorption
cross section of any isotope {about 3.5 x 10° barns). It has a half-life
of about 14 hours. Although Xel39 is formed as a fission product to a
small extent, the major source of Xel35 g by the radioactive decay of
1135 which is the daughter of Te1359 a fission product.

The concentration of Xel39 as a function of time is determined by the
rate of buildup, due to flux and decay of Iodine, and the rate of loss which
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Fig. 14.1 - Fission product buildup in enriched thermal reactors
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is due to Xel39 burnup (neutron absorption) and Xel35 decay. These two
competing effects result in an equilibrium concentration occurring after
approximately 50 hours of steady operation. For a high flux reactor
(& = 1014 neuts/cmz—sec) the equilibrium effect on reactivity is about

5 percent. This in itself is not excessive. However, if after this con-
centration is built up, the reactor is shut down the Xenon concentration
will begin to build up rapidly. This is due to the fact that the neutron burn-
up term disappears. Xenon is still being formed, however at the same
rate, due to the decay of Jodine. For a high flux reactor, this effect will
peak at about 12 hours after shutdown with a reactivity effect of almost
40 percent, decaying after about two days to negligible proportions. If
it is necessary to restart during the period of large buildup, a large
amount of extra fuel {xenon override) must be present in the reactor. It
should be mentioned that since the fission product poisons are due to
large thermal absorption cross sections, reactors in which most of the
fissions are produced by non-thermal neutrons, namely intermediate or
fast reactors, do not exhibit this poisoning effect.

14. 2 REACTOR CONTROL

Another effect requiring excess reactivity is due to high temperature
operation. To be stable, reactors are designed to have negative tem-
perature coefficients of reactivity. Then, if something causes the power
to rise, the temperature of the reactor will rise and the reactivity will
become less than 1, reducing the power to its original level. This of
course means that when the reactor is started up from the cold condi-
tion, reactivity must be added as the average temperature of the reactor
increases.

In order to compensate for the extra reactivity until it is needed, two
methods are availabie,

Control rods, the most common method employed to date consist of
rods fiiled with a poison such as boron or cadmium. The rods can be in-
serted intc the reactor to reduce reactivity and removed to increase it.
(See Appendix for optional location.) The insertion of a poison rod can
also be synchronized with the removal of a fuel rod to increase the effect.
This method, though effective, leads to local distortions of flux which tend
to reduce the efficiency of the power production.

A more recent solution to the reactor control problem is the use of
burnabie poisons. This is the insertion into the reactor, in a permanent
fashion, neutron poisons which, partially at least, compensate for the
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excess fuel which burns out with time. In theory, the poison should have
the identical cfoss section as the fuel, so that as fuel burns out, the poison
burns out at the same rate, the reactivity remaining constant with time.

At present boron, having a cross section the closest to the desired value,
is used, but tends to burn out faster than the fuel. Thus the excess re-
activity begins to increase with initial operation of the reactor, and then
decreases.

The discussion on controls in this section has implied solid fueled re-
actors. In the case of liquid fuel reactors, which have not been exploited
successfully as yet, the problems of control are largely alleviated. Fuel
solutions can be diluted or strengthened continuously as required. Also
xenon is an insoluble gas in these reactors and this problem disappears.
This situation is one of the major advantages of the liquid fueled (either
aqueous or liquid metal solution, or slurry) reactors.
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15. REACTOR DESIGN PROBLEM

Part One: Diffusion Kernel Computation

Design a minimum volume bare cylindrical reactor to operate at 500°F.
This reactor is to furnish 30 megawatts of power for 30 days. (No less than
30 days and no more than 35 days.) Assume 3.1 X 1016 fissions/sec will
produce 1 megawatt of power. Allow no more than 0. 15 excess criticality
factor at the beginning of operation. Summarize the characteristics of
the reactor by giving:

1. Physical dimensions, radial buckling and longitudinal buckling.

. Fuel loading.

. Excess criticality at the start of operation.

Piot of longitudinal and radial thermal flux.

Plot of excess criticality as a function of operating time.

Plot of control system capacity required to maintain critical opera-
ticn as a function of operating time.

7. Fast neutron non-escape probability.

8. Thermal neutron non-escape probability.

DG W

The computational work is to be based on the following specifications:

1. Use a water moderator (ordinary water) and U-235 fuel. These are
to be uniformly mixed and the finite volume of the fuel material
accounted for in the computation.

2. Treat fast neutron slowing down according to the four kernel (dif-
fusion kernel) method summarized in Section 9. 3.

3. Compute power from the equation

P{megawatts) = (3. 1x1016)“=1 f fe Z¢dt(r, z)dr dz

4, Use uniformly distributed cadmium as a control system. Assume
the microscopic absorption cross-section for thermal neutrons is
3700 barns but is zero for all other energies.

5. Assume that poisoning from fission products can be represented by
the method of using an equivalent amount of Boron-10 absorption
with the Boron-10 uniformly distributed. Assume the microscopic
absorption cross section for thermal neutrons is 4000 barns but is
zero for all other energies. The amount of Boron-10 to use in this
method is given in Table 1.0 as a function of the amount of U-235
consumed during operation.
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TABLE 1.0

Fractional Grams of Boron-10 per
Burn-up Kg of U-235
0 0
0.025 0. 085
0.050 ‘ . 0. 105
0.075 : 0.120
0.100 0. 135
0.150 0. 155
0.200 . 0.170
0.300 . 0. 200
0.400 0.225
0.500 0. 250

6. All cross section information required is given in Table 2. 0.
Part Two: Multigroup Method

Set up the multigroup equations for a Bé-U-235 spherical reactor.
Evaluate the group constants. This will not be a thermal reactor and in
the multigroup method fast fissions are explicity accounted for in each
fast group as well as at the thermal level. Use the following fast groups:

Group Lethargy Range

1 0-3.0

2 3.0-8.0

3 8.0 - 15.5

4 : 15.5 - 16.5

5 16.5 - 18.966
Thermal 18.966 ( 500°F)

Use age theory to estimate the fuel loading and reactor size; this will
give some approximate numbers to use in computing the group constants.
Try to fix things up so that the reactor would run at least ten days at 30
megawatts power, in the age theory approximation.

Set up the finite difference equations one would use in coding this treat-
ment for a computer. Include a criticality computation.

Compute the group constants according to the method given in the class
notes {Appendix 1 ).
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APPENDIX 1: MULTIGROUP EQUATIONS

. Consider the lethargy range (0,u;) to be divided into n intervals of
width Uy, ..., U, such that £<<Tj for all i. The average number of col-
lisions a neutron must experience to traverse the i-th group, in the case
of pure scattering is

Collisions
neutron

A = (U/¢) (1)

Let Zj be the ""average' cross section for the i-th group and &; (x) the
neutron flux for the group. The number of neutron collisions per cm3-

sec is then
s L Collisions
c=2i%(®x) " 3 (2)

The ratio c/A is, therefore, the number of neutrons which scatter through
the i-th group per unit volume per sec.

c/A = £3{8;(x)/Uj (3)
‘ In the base of pure scattering the diffusion balance equation for the i-th
group is
z Zi-
Di A & (x) - 24 o (x) + £231 g, 4 (x) + 83 (x) = 0 (@
Ui Uj-1

for a steady state. The source term has the form
&
Si(x) = VF} j:El Zgi 81 (%) (5)

where

F: = ff(u)du
Ui

f(u) being the p.d.f. for fast neutron lethargy at fission. In the present

notation the thermal group is the n-th group which is considered to have
zero width, i.e., monolethargic. The thermal balance equation is
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£Zn-1
Un-1

DpA &, (x) - Zan®p(x) + ¢p-1(x)=0 (6)

Note there is no fission source term for the thermal level.

One can account for absorption by altering one term in Equation (4).
When absorption is present ¢/A, in Equation (3), represents the re-
moval of neutrons from the i-th group by either scattering or absorp-
tion and hence will still serve as a loss term. The scattering entrance
term for neutrons slowing down out of the (i-1)th group is

£Zgi-1 &y_1(®) (7)

Ui-1
and so the diffusion balance equation becomes

£2dy(x) N §2gi-18i-1(x)
Uj Ui-1

Dj A &§(x) -
) ®)
+ uF:Zi Zfj@j(x) =0
J::

The parameters {Dj, Zj, Zgj} are averages of D(u), Z (u) and Zs (u)
over the groups i=1, ..., n. One way to specify the particular way in
which the average is performed is to require that:

1. <r2 > for the i-th group is that given by the diffusion point kernel
2. The total current for the i-th group is given by
DjV &; (x)

3. The total number of neutrons passing from the (i-1)th group to the
i-th group is consistent with the absorption escape probability for
the (i-1)th group.

Condition (1): In diffusion theory one has
D=3,12=1%,<r2>/6 (9)

In the group balance equation the analog to 2, is the removal cross section

Ziz Ui (10)
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and so the <r2 >i condition requires that
(6 Ui Dy/£Z) = <r?> (11)

It can be shown that (Weinberg and Wigner p. 330)

2., - [ 8D(w
ST thiEE(u)du

Hence one arrives at the condition that the quotient Di/Zi has the form

Dy_1 D@
Zi Uj_ Ui Z(u)

du (12)
Condition (2): The current requirement is met by averaging Dj on the
basis of flux weighting.

fJ(x,u)duz -D; fatl)(x,u)du= -fD(u) V¥ (x) @ (u) du

:>Di$\1f(x) fgo(u)du =V ¥(x) fD(u) @ (u) du

=Dj= [D() ¢ (w)du/ [¢(u)du (13)
In the asymtotic form

Const.\ 1
EE JZ(E)

& (E) = F(E)/Z (E) (

Const dE

& (E)dE = tE 2 (E)

_ Const.
$ (U) du —22—017 du

Hence

Dj = é[mu)/z (w)]du/ [ du/Z (u) (14)
i Uj
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[N
°

But from Equation (12)

J [D ( )]du—-DlUl/Zl
Ui

SO

1=0y/2; [ du/Z (w)
Ui

or

R

Ll du

(15)

(16)

Dj and Z; are thus computed from Equation (14) and Equation (16),

respectively.

Condition (3): This condition determines how to compute Zgj so that its
effect on the computation will be consistent with the interpretation of Zj.

This will be the case if

Scattering Loss o
Scat. Loss + Abs. Loss ™

e.
£24i 9 (%)/Uj _ b
£ (x)/Uj 1
Hence
Za (v) du
Z‘ u)

ZSi = Zle

Integration of Multigroup Equations

Having obtained Zj, Dj, and Zg; one integrates Equation (8) by assuming
a spatial distribution for &;} ., (x) and then solvin
then &9 --- etc down through &®{her (x) again. If @

is solved; if not one reiterates to get

(2) (2 ,(2)
e M

(m)

(m-1)

until <I’ <l>

%E

(17)

quation (8) for &1
= cIJ% ) the problem

. When this occurs the problem is solved. The criti-
cality constant 18 the ratio of the neutron populations in successive genera-

tions, provided the spatial variation of the flux from one generation to the

next remains the same. Once the fluxes remain proportional to each other

the criticality factor is the ratio of the fluxes for the same group for two

consecutive iterative solutions.
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APPENDIX 2: PERTURBATION THEORY

Perturbation theory is used to see what effect small changes in reactor
composition have upon its operating characteristics. It is useful in cal-
culating:

1. Effectiveness of thin control rods

2. Mean generation time

3. Criticality change due to fuel depletion
4. Criticality change due to poisons

A detailed discussion of perturbation theory is beyond the scope of these
lectures. The general idea, however, is this: A realistic reactor can be
thought of as a "perturbation’ of an idealistic reactor model for which,

at least, one can obtain a solution for flux, criticality, etc. The char-
acteristics of the idealized model are taken as the "unperturbed" state,
and the characteristics of the realistic reactor derived using perturbation
theory. The perturbations being the differences between the realistic and
idealized systems.

a. Importance Function ¥*(¥) - Control Rod Placement

The importance function ¥* (¥) tells bne how many daughter neutrons an
originally introduced neutron at position r will ultimately supply. Intui-
tively think of the situation this way: A neutron born at the surface of a
reactor has a good chance of escaping. It can't be as important a producer
of daughter neutrons, therefore, as a neutron born at the center of the
reactor. In one group theory the importance function is proportional to
the flux and can, indeed, be thought of as being identical to the flux. We
will restrict ourselves to this special case. In this restricted sense the
statistical weight W of a volume element AT is

W(Ar) = f@z(f)di"

Reactor

and the criticality change 6C arising from a change 6Z, in the non-fission
absorption cross section in Ar is

62 AT®2(T)
o fquéz(i") dr

5C o 52 W(AT)

In a bare cube reactor, a volume element AV at the center of the cube
has statistical weight

wW(AV) =8AV AN
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where V is the cube volume. Hence a change 6Z, in this central element
AV is eight times as effective in changing C as the same total change
distributed uniformly over the entire volume. This hypersensitivityof a
reactor to conditions at its center makes a centrally placed control rod the
most effective control rod, provided it is not fully inserted? It turns out
that the rate of change in C for a unit lengthof control rod movement is
greatest when the control rod is inserted with its tip at the center of the
reactor. Hence regulating rods are usually only inserted half-way to
maximize response time. In the above treatment & is the unperturbed
flux in a homogeneous bare reactor prior to the unpositionof the per-
turbation aza.

b. Effect of Fuel Depletion

fuel —
o cfe@v-1-3a /5] T e%(F) dF
6Cdepletion = - = f 32 ) vegdr

(c is a constant)

c. Reciprocal Lifetime

1 _ [[9%(0) J0()]oF
X~ Je2(r)dr

1 v >
Z—(—r—) =VZgq - 3 dw(D V&)

v = neutron velocity

d. General Change in C: 6C

sc - JE[B2D (v03¢ -525) - § &(F) - oD V()]
[veg d2(r) dF

This shows absorption perturbation effects go as &2 put diffusion
perturbation effects go as (V 3)2.
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APPENDIX 3: ELASTIC COLLISIONS
(Neutron Slowing Down Mechanism)

Neutrons can penetrate matter over large distances. Only by direct
collisions with nuclei can neutrons be affected in any way. Electro-
magnetic and electrostatic forces do not affect it. The force of gravity
has a negligible affect.

In 1934, Fermi, who was in the habit of storing his neutron source in
a fish pond, discovered quite by accident, that the radioactivity produced
in targets bombarded with neutrons is greatly increased when the neutrons
are passed through a hydrogeneous material. He showed that the neutrons
were slowed down in this material, without being absorbed strongly, and that
the targets had approximately 1/v type cross sections, increasing the
reaction probability.

For materials of low atomic weight, the neutron slowing-down mechanism
is elastic scattering. To examine the qualitative and quantitative aspects
of scattering by light nuclei, the center of mass (C) system of coordinates
is resorted to since the results appear in relatively simple form. Whereas
in the laboratory system (L) the target nucleus is assumed to be at rest
before the collision, in the C system the center of mass of the neutron
and nucleus is assumed to be at rest. The collision process is then
described from the viewpoint of an observer moving with the center of
mass. Figure A3.1 shows the relationship between the two systems '
pictorially.

In the L system before collision, the neutron of mass m moves toward

the nucleus with speed vo', momentum mv,, and energy E . The nucleus

of mass Mt is assumed to be at rest. From the definition of center of mass:

mr + MtR
Rc=. e,
m+Mt
Sinceft=0,*

- m%l = MVo _ 3.1
C m+M m+M Ver (A3.1)

Here v, is the velocity of the center of mass.

After the collision, the neutron moves with speed v at some angle ¢
with the original direction.

. d
&K =
R_dtR
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Relationship of laboratory system to the center of mass system "

CENTER
OF MASS v o

Vo,

M M; + m Mt

(a) L system before collision (b) L system after collision
m
Mt 6
V. -V v
o 'c c
o Q) —)
m
M,

(c) C system before collision (d) C system after collision

Fig. A3.1 - Neutron slowing down mechanism
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In the C system before collision the neutron moves to the right with
speed

M
o Vc¢=Yo M, +m
and the nucleus moves to the leit with speed V- Thus the total momentum
of the C system is

v (A3.2)

M v mv
—~to \- M —0_) = g. (A3.3)
" <Mt +m> t (Mt+m) 0

’

A vector diagram of the relationship between the two coordinate sys-
tems is shown in Figure A3. 2.

Fig. A3.2 - Vector diagram relating neutron velocity
and angle in L and C systems

In the C system, since the total momentum is conserved and is zero,
when the neutron is scattered to an angle 6, the nucleus must travel in
the direction 180° + g. For example, let us look at the two extreme cases
of elastic scattering:

(a) A glancing collision i.e. 6= 0. By applying the vector addition in
Figure A3. 2:

_ M m -
v=v, (@ftﬁ) + VO(Mt+m> \A

Thus E = E
o

(b) A head-on collision i.e., 6 - 180°. By the same method,

M, mv (Mt-m\
~ Vo M;+m Mi+m Vo Mt+m,/

v
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In this collision the neutron suffers its maximum energy loss. Note,
this energy change is in the L system. In the C system, the neutron
energy does not change.

From example (b) we see that for a neutron scattering in graphite (M=12),
[E/Ey] max = 0.72. In hydrogen, [E/E;] max = 0. The neutron then, can
lose up to 28 percent of its energy in a collision with a graphite atom and up
to 100 percent of its energy in a collision with hydrogen.

Applying the law of cosines to the vector diagram Figure A3.2, we see
that:

\

M \2 / M " m
2_.2 t 2 m \2 _ o9, 2/ t cos 6
ve=v, ( Mt+m> + Vo ( Mt+m> + 2V, \ Mt+m Mt+m/} s

(A3.4)
The energy ratio is then, in terms of g:
2 2 2
E/EO - LZ _ M;“ + m® + 2M;mcosé (A3. 5)
Yo (Mt+m)Z
Letting Mt/m = A,
2
A° +1 + 2Acos @
E/E._ = (A3.6)
/ o (A+1)2

The law of sines can now be applied to find the relationship of 6 to ¥:

sin (6 - ¥) sin ¥
= 3.7
- - : M; (A3.7)

o Mt+m o Mt + m
4
Expanding sin (6 - ¥) we arrive at the result:
A sin 6

= =27 3.8
tan ¥ 1+Acos? (A3.8)

4

We have now in equations (A3. 6) and (A3. 8) the neutron energy decrement
per collision as a function of A and V.

What we would like to calculate now is - after a collision from an initial
energy E,, what is the probability that a neutron has an energy E? Or,
given a large number of neutrons scattering from energy E,, what is the
average 'energy of the scattered neutrons.
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Assuming that in the C system the scattering probability is isotropic,
the number of neutrons, dN that will have energy E after a collision is
equal to the number scattered to angles between 6 and 8 + df. This is
simply the area on a sphere between 8 and 6 + df divided by the total area:

_ o 2mr(sinf)rdd N :
dN=N ) =5 sin 6do (A3.9)

Differentiating equation (6. 23) with respect to 8,

2A sin 6
dE = - EOW dé (A3.10)

The isotropy of scattering in the C system is the essential reason for in-
troducing that system. In the L system, the scattering is predominantly
forward, with (cos ¢),ye = 2/3A.

Substituting N for & from Equ. (A3.9) into A3. 10) we find that

+)2 1
4A Eo

dE (A3.11)

AZI%
o

is the probability that a neutron with initial energy E, will have an energy
between E and E + dE. The average logarithmic energy decrement <&> is
a term which we find useful in shielding and reactor problems.

E
£ = <1n ?0> (A3.12)

E
— In-2dE  (A3.13)
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This is easily integrated by substituting x = E/E o giving the result:

2
L e A
£=1+ oA n Arl (A3. 14)

Elements having £ as large as possible have the best slowing down pro-
perties. For A > 10 the approximation

2

§ = A+2/3

(A3.15)

is accurate to at least 1 percent. Some representative values of § are shown
in Table A3.1.

TABLE A3.1
Material A

H 1 1

D 2 0.725
Be 9 0.209
C 12 0.158
U 238 0.0084
H20 18 0.948

To calculate an average <¢> for mixtures, or compounds, assuming
molecular binding effects are negligible we can use the formula:

5121"‘522"'"-“-
ST C B - (A3. 16)

where &; are the logarithmic energy decrements for the pure elements and
ZS are the macroscopic scattering cross sections for the elements in the
mixture. In this manner it is calculated that E(HZO) = 0.948, £(D90) =
0.570, &£{(BeO) =0.173.

Materials having large ¢ and large =g are the more efficient slowing down
media. If furthermore, a material has a low Z,, it is a good moderator.
This leads to the "figure of merit" called the moderating ratio = &'ES/Z}a,
shown in Table A3. 2. Physically the moderating ratio is £ times the ratio
q the scattering probability to the absorption probability, i.e., &(prob. to
scatter)/{prob. to be absorbed).
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TABLE A3. 2

Moderator Properties

Moderator ETg EZ/Zg
Water 3.27 ecm-1 149
Heavy Water 0. 256 7760
Helium (N. T. P.) 0.9x107° 45
Beryllium 0.181 146
Carbon 0. 061 234
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APPENDIX 4: SOME STANDARD KERNELS

1. Moment form of the criticality equation
C=kPiP;
P¢ fast neutron nonescape probability
P; thermal neutron nonescape probability.
By the second fundamental theorem of reactor theory

sinBr dr

P; = K*(B) = [K(r) 4nr2

sin Br

AsB—0 Br

—1 and Ps=1

o0
i.e. f K(x,x')dx =1 in an infinite medium

0
sinx=x-x—3+x—5
6 120
sinx xz x4
- =] ~-—+—=—-....
X 6 120

Two terms in the series give
P;=K*(B) = [4rr2K(r) (1 - %BZ r2> dr
2 B2
o f471r K(r)dr - 3 fr2 K (r)(4nr2dr)

2
T -1-B27

P;=1-B2

This is valid as long as sin Br

~1 - Br i.e. very small B .
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All odd moments vanish, and in series form,

= (-1 o2n .2n
1=Z a1 B ST

. Gaussian Kernel

3/2
K(x,x)= %_; e~ Ix-x'12/4r

K*(B) = e"BZT (Age theory)

. Single Collision Kernel

. 1 '
K%)= 20 grzogyz ¢ 702 %

K*(B)EZB—O ta.n-lzE { fK(i,E')I)_:-g_' 12dx =67

0

| - 37
23
= ‘1 2
‘/mtan v3TB

. Diffusion Kernel

__ k2
rix-x'|

K(x,x') wxEl 22

1
* =
K'(B) =187

. Convolution Kernels

In water K(x,x'), Single collision, is best for E > 100 kev and
K(x,x'), Gaussian, is best for E < 100 kev.
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The slowing down kernel is then

KH,0 (%, %0) = [ XsC (%', %0) Kg (%', ¥') dx’
P = Kic(B) Kg(B)

1 | . 5 | 2
A -1 2 "TZB
| 3———2-5_]3 tan-1 /3 71B ‘ e

Ty ¢ 2 Mev to 100 kev
79 : 100 kev to thermal
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